щелочной электролит для электроосаждения цинк-никелевых покрытий

Классы МПК:C25D3/56 сплавов
Автор(ы):, ,
Патентообладатель(и):Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ивановский государственный химико-технологический университет" (ИГХТУ) (RU)
Приоритеты:
подача заявки:
2013-01-09
публикация патента:

Изобретение относится к области гальванотехники и может быть использовано в машиностроении, приборостроении и автомобилестроении для защиты от коррозии стальных изделий. Электролит содержит, г/л:оксид цинка 12-15, едкий натр 100-120, никель сернокислый 7-17, триэтаноламин 40-60, гексаметилендиамин-N,N,N',N'- тетрауксусную кислоту 0,5-2, диглицин 1-3, воду до 1 л. Технический результат - увеличение коррозионной стойкости цинк-никелевых покрытий, расширение диапазона рабочих плотностей тока, снижение экологической нагрузки на очистку сточных вод, путем использования низкоконцентрированных электролитов. 2 табл., 4 пр.

Формула изобретения

Щелочной электролит для электроосаждения цинк-никелевых покрытий, содержащий оксид цинка, едкий натр, никель сернокислый семиводный, триэтаноламин и воду, отличающийся тем, что он дополнительно содержит гексаметилендиамин-N,N,N',N'-тетрауксусную кислоту и диглицин, при следующем соотношении компонентов, г/л:

оксид цинка12-15
едкий натр100-120
никель сернокислый 7-17
триэтаноламин 40-60
гексаметилендиамин-N,N,N',N'-тетрауксусная щелочной электролит для электроосаждения цинк-никелевых покрытий, патент № 2511727
кислота 0,5-2
диглицин 1-3
вода до 1 литра

Описание изобретения к патенту

Область техники

Изобретение относится к области получения гальванических покрытий цинк-никелевыми сплавами на сталях и может быть использовано в машиностроении, приборостроении, автомобильной промышленности и др.

Уровень техники

Известен электролит для осаждения светлых блестящих покрытий из сплава, содержащего 2% Ni [Гальванотехника: Справ. изд. Ажогин Ф.Ф., Беленький М.А., Галль И.Е. и др. - М.: Металлургия, 1987. - 736 с], содержащий (г/л):

Цинк (в пересчете на металл) 30-35
Никель (в пересчете на металл) 0,15-0,75
Цианид натрия85-100
Едкий натр65-70

Недостатками аналога являются: высокая токсичность цианидов и связанные с этим большие затраты на охрану труда, технику безопасности и на обезвреживание сточных вод, а также невысокая коррозионная стойкость покрытий, связанная с очень низким содержанием никеля в сплаве.

Известен аммиакатный электролит для получения сплавов Zn-Ni с содержанием никеля в сплаве 23-27% [патент № 2441107 ЭЛЕКТРОЛИТ ДЛЯ ЭЛЕКТРООСАЖДЕНИЯ СПЛАВА ЦИНК-НИКЕЛЬ], содержащий (г/л):

Оксид цинка10-15
Хлорид никеля шестиводный 60-90
Хлорид аммония 230-250
Борная кислота 20
Препарат ОС-20 0,5-0,6
Продукт конденсации щелочной электролит для электроосаждения цинк-никелевых покрытий, патент № 2511727
диметилолтиомочевины и полиэтиленполиамина 0,003-0,005
pH5,0-5,5
Катодная плотность тока, А/дм2 0,1-5,0
Температура, °C 18-25

Недостатком аналога являются снижение защитных свойств покрытий, при заявленном содержании никеля в сплаве 23-27%, за счет потери анодного по отношению к стали потенциала и трудности для последующей пассивации. Кроме того, в электролите используется токсичная борная кислота, у него узкий интервал рабочих концентраций органических добавок и высокая концентрация хлорида аммония.

Наиболее близким к предлагаемому изобретению по технической сущности и достигаемому результату, то есть прототипом, является щелочной электролит для получения Zn-Ni сплавов с содержанием никеля в сплаве 10-11% [Chandrasekar M.S., S.Srinivasan, M.Pushpavanam Properties of Zink alloy electrodeposits produced from acid and alkaline electrolytes // J. Solid State Electrochem (2009). 13. P.782], содержащий (г/л):

Оксид цинка9-12
Едкий натр12-120
Сульфат никеля семиводный 1-7,5
Триэтаноламин 85-120
pH 13-14

Недостатками прототипа являются высокая скорость коррозии Zn-Ni сплавов с содержанием никеля в сплаве 10-11%, не обеспечивающая максимальную коррозионную защиту стальных изделий, узкий диапазон катодных плотностей тока от 2 до 5 А/дм2. Кроме того, использование высоких концентраций триэтаноламина в электролитах приведет к трудностям при очистке сточных вод гальванических производств и, как следствие, к плохим экологическим последствиям.

Сущность изобретения

Задача изобретения - снижение скорости коррозии цинк-никелевых покрытий, при сохранении покрытиями анодного характера защиты сталей (содержание никеля в покрытиях 15-16%), расширение диапазона рабочих плотностей тока, снижение экологической нагрузки на очистку сточных вод, путем использования низкоконцентрированных электролитов.

Поставленная задача достигается путем создания щелочного электролита для электроосаждения цинк-никелевых покрытий, включающего оксид цинка, едкий натр, никель сернокислый семиводный, триэтаноламин, воду, гексаметилендиамин-N,N,N',N'-тетрауксусную кислоту и диглицин, при следующем соотношении компонентов, г/л:

Оксид цинка12-15
Едкий натр100-120
Никель сернокислый 7-17
Триэтаноламин 40-60
Гексаметилендиамин-N,N,N',N'-тетрауксусная 0,5-2
Кислота щелочной электролит для электроосаждения цинк-никелевых покрытий, патент № 2511727
Диглицин 1-3
Вода до 1 литра
pH 13-14
Температура, °C 18-25
Катодная плотность тока, А/дм20,5-5,0

Выход по току сплава 80%. Аноды никелевые.

Сопоставительный анализ с прототипом позволяет сделать вывод о том, что заявляемый электролит отличается от него введением новых компонентов, а именно гексаметилендиамин-N,N,N',N'-тетауксусной кислоты и диглицина.

Цинка оксид, ГОСТ 10262-73, ч, химическая формула ZnO, плотность 5,7 г/см3, растворимость в воде 0,00016 г/100 г при 20°С. Амфотерен - растворяется в избытке щелочей и аммиака с образованием цинкатов.

Натрия гидроксид, ГОСТ 4328-77, ч, химическая формула NaOH, плотность 2,13 г/см3, растворимость (% по массе) в воде 52,2 (20°С).

Никеля сульфат, 7-водный, ГОСТ 4465-74, ч, химическая формула NiSO4·7H2O, плотность 1,949 г/см3, растворимость 21,4 г в 100 г холодной и 43,42 в 100 г горячей воды.

Триэтаноламин ТУ 2423-168-00203335-2007 - бесцветная вязкая жидкость со слабым аммиачным запахом. Плотность 1,1242 (20°C, г/см3 ). Химическая формула (HOCH2CH2)3 N, мол. вес 149,19. Неограниченно смешивается с водой в любых пропорциях.

Гексаметилендиамин-N,N,N',N'-тетрауксусная кислота (ГМДТА)

(HOOC-CH2)2 N-(CH2)6-N(CH2-COOH)2

М=348.35 г/моль.

Белый кристаллический негигроскопический порошок. ГМДТА является четырехосновной кислотой, способной присоединять протоны с образованием катионов типа аммония. Относится к классу комплексонов алифатического ряда с третичной аминогруппой - производных этилендиамин- N,N,N',N'-тетрауксусной кислоты (ЭДТА).

Диглицин (глицил-глицин)

NH2-CH2-CO-NH-CH2-COOH

М=132.15 г/моль.

Порошок белого цвета. Разлагается при 113°C. Растворимость: 22.75 г в 100 г воды. Относится к классу дипептидов. В водном растворе обладает буферными свойствами в интервалах значений pH 2-4 и 7-9.

Сведения, подтверждающие возможность осуществления изобретения

Пример 1. Для приготовления 1 л электролита в 0,4 л воды растворяют 100 г NaOH. При перемешивании добавляют небольшими порциями 12 г оксида цинка в раствор щелочи до полного растворения (раствор № 1). Растворяют в отдельной емкости сернокислый никель в количестве 7 г в 0,3 л воды и вводят в этот раствор триэтаноламин при перемешивании в количестве 40 мл. Добавляют в этот раствор предварительно растворенные в 100 мл воды ГМДТА в количестве 0,5 г и диглицин (глицил-глицин) в количестве 1 г (раствор № 2). Смешивают растворы № 1 и № 2 и доводят водой объем электролита до 1 л. После введения в электролит всех компонентов его объем доводят водой до 1 л.

Приготовленный электролит имеет следующий состав, г/л:

Оксид цинка12
Едкий натр100
Никель сернокислый 7
Триэтаноламин 40
Гексаметилендиамин-N,N,N',N'-тетрауксусная щелочной электролит для электроосаждения цинк-никелевых покрытий, патент № 2511727
кислота 0,5
Диглицин 1
Водадо 1 литра
pH 13
Температура, °C 18-25
Катодная плотность тока, А/дм20,5-5,0

Примеры с другими значениями заявляемого электролита приведены в таблице 1.

Из приготовленных электролитов осаждали цинк-никелевые покрытия.

Полученные образцы испытывали с целью определения скорости коррозии в 3% NaCl. Вначале определяли ток коррозии Zn-Ni покрытие - сталь и пересчитывали на массовый показатель коррозии. При определении диапазона рабочей плотности тока устанавливали верхнюю и нижнюю границы катодной плотности тока. Для их определения на образцы из стали наносили цинк-никелевое покрытие толщиной 6 мкм. Полученные покрытия по внешнему виду соответствуют требованиям ГОСТа 9.301-86, а по сцеплению с основным металлом ГОСТу 9.302-88.

При всех испытаниях характеристик получаемого покрытия проводили не менее 4-5 параллельных опытов и брали среднеарифметические значения величин. Результаты испытаний представлены в таблице 2.

Из таблицы 2 видно, что предлагаемый электролит (примеры 1-3) позволяет получать цинк-никелевые покрытия с содержанием никеля 15-16%, обладающие скоростью коррозии, в 2 раза меньшей в отличие от прототипа.

Другим преимуществом заявляемого электролита является то, что электролит обладает более широким диапазоном рабочей плотности тока, а также в электролите снижены концентрации основных компонентов, поэтому он имеет более низкую стоимость и его использование с экологической точки зрения более выгодно, работает при температуре 18-25°C, то есть не требует затрат электроэнергии на подогрев.

Таблица 1
Концентрация, г/лНомера примеров
12 3Прототип
Оксид цинка12 13,5159-12
Едкий натр100 110120 12-120
Никель сернокислый 71217 1-7,5
Триэтаноламин 405060 85-120
Гексаметилендиамин-N,N,N',N'-тетрауксусная кислота0,51 2щелочной электролит для электроосаждения цинк-никелевых покрытий, патент № 2511727
Диглицин 123 -
pH13 13,514,0 13-14
Температура, °C 1822 25-
Катодная плотность тока, А/дм20,5 35,0 2,0-5,0

Таблица 2
Номера примеров% Ni Скорость коррозии Zn-Ni покрытия, г/м2·ч при катодных плотностях тока
0,5 А/дм21 А/дм2 3 А/дм2 5 А/дм2
1 15-160,0610,069 0,0740,076
215-16 0,0620,0710,076 0,078
3 15-160,064 0,0720,0780,080
Прототип10-11 -- 0,1560,165

Класс C25D3/56 сплавов

состав электролита антифрикционного электролитического сплава "цинк-железо" для осаждения в условиях гидромеханического активирования -  патент 2489527 (10.08.2013)
способ электролитического осаждения сплава железо-алюминий -  патент 2486294 (27.06.2013)
система и способ нанесения покрытий из металлических сплавов посредством применения гальванической технологии -  патент 2473718 (27.01.2013)
электролит для осаждения сплава цинк-галлий -  патент 2459016 (20.08.2012)
способ нанесения электролитических покрытий на основе хрома -  патент 2457288 (27.07.2012)
электролит для осаждения сплава никель-висмут -  патент 2457287 (27.07.2012)
способ получения оксидного покрытия на стали -  патент 2449062 (27.04.2012)
способ получения покрытия из оксидов металлов на стали -  патент 2449061 (27.04.2012)
электролит для электроосаждения сплава цинк-никель -  патент 2441107 (27.01.2012)
электролит для получения никель-железных покрытий -  патент 2424380 (20.07.2011)
Наверх