способ получения эпоксидированных 1,2-полибутадиенов

Классы МПК:C08F8/08 эпоксидирование
C08C19/06 эпоксидирование
C08F136/06 бутадиен
Автор(ы):, , , ,
Патентообладатель(и):Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Башкирский государственный университет" (RU)
Приоритеты:
подача заявки:
2012-12-19
публикация патента:

Изобретение относится к области высокомолекулярных соединений, в частности к получению полимерных продуктов на основе 1,2-полибутадиенов, содержащих в составе макромолекул эпоксидные группы. Описан способ получения эпоксидированных 1,2-полибутадиенов, заключающийся во взаимодействии полимера с эпоксидирующим агентом, содержащим карбоновую кислоту и пероксид водорода, отличающийся тем, что в качестве полимера используют нетканый материал, состоящий из волокон 1,2-полибутадиена, диаметром волокон 1,1-3,5 мкм, поверхностной плотностью нетканого материала 40-80 г/см2 , в качестве карбоновой кислоты используют муравьиную кислоту при мольном соотношении 1,2-полибутадиен : муравьиная кислота 1,0:0,2-1,0, 1,2-полибутадиен : пероксид водорода 1,0:0,5-2, синтез проводят при температуре 10-30°С, в течение 1-4 ч. Технический результат - получение эпоксидированных 1,2-полибутадиенов способом, характеризующимся более высоким уровнем безопасности, исключением использования в процессе синтеза органических растворителей, снижение энергетических затрат, повышение качества целевого продукта.1 з.п. ф-лы, 1 табл., 27 пр.

Формула изобретения

1. Способ получения эпоксидированных 1,2-полибутадиенов, заключающийся во взаимодействии полимера с эпоксидирующим агентом, содержащим карбоновую кислоту и пероксид водорода, отличающийся тем, что в качестве полимера используют нетканый материал, состоящий из волокон 1,2-полибутадиена, диаметром волокон 1,1-3,5 мкм, поверхностной плотностью нетканого материала 40-80 г/см2, в качестве карбоновой кислоты используют муравьиную кислоту при мольном соотношении 1,2-полибутадиен : муравьиная кислота 1,0:0,2-1,0, 1,2-полибутадиен : пероксид водорода 1,0:0,5-2, синтез проводят при температуре 10-30°С, в течение 1-4 ч.

2. Способ по п.1, отличающийся тем, что используют атактический или синдиотактический 1,2-полибутадиен со среднечисловой молекулярной массой М nот 30000 до 150000 и содержанием в макромолекулах звеньев 1,2-полимеризации 60-95 мол.%.

Описание изобретения к патенту

Изобретение относится к области высокомолекулярных соединений, в частности к получению полимерных продуктов на основе 1,2-полибутадиенов, содержащих в составе макромолекул эпоксидные группы.

Эпоксидированные полимерные продукты характеризуются высоким комплексом физико-механических свойств, хорошими адгезионными свойствами и могут найти применение в составе клеевых композиций, герметиков, лакокрасочных покрытий, в качестве модификаторов в составе различных композиций термопластов и эластомеров.

Эпоксидированные атактические 1,2-полибутадиены могут быть получены химической модификацией атактических 1,2-полибутадиенов, содержащих в составе макромолекул двойные углерод-углеродные связи в основной цепи и в боковых, которые синтезируют в промышленности полимеризацией 1,3-бутадиена на комплексных катализаторах [патент РФ 2072362, кл. C08F 136/06, C08F 36/06, C08F 136/00, C08F 36/00, опубл. 27.01.1997; патент РФ 2177008, кл. C08F 136/06, C08F 36/06, C08F 36/04, C08F 4/70, опубл. 20.12.2001; патент РФ 2283850, кл. C08F 36/06, C08F 136/06, опубл. 20.09.2006; патент США 4182813, кл. C08F 136/06, C08F 36/00, C08F 4/00, опубл. 08.01.1980; патент РФ 2139299, кл. C08F 136/06, опубл. 10.10.1999].

Способ получения эпоксидированных 1,2-полибутадиенов основан на взаимодействии 1,2-полибутадиена с эпоксидирующим агентом, в качестве которого используют органические надкислоты. Наибольшее распространение получил способ эпоксидирования 1,2-полибутадиенов, в котором надкислоту генерируют непосредственно в реакционной колбе взаимодействием водного раствора пероксида водорода с соответствующей карбоновой кислотой.

Известен способ получения модифицированного эпоксидными группами тактического 1,2-полибутадиена действием надпропионовой кислоты [патент США 4851556, кл. C08F 8/00, С08С 19/06, C08F 8/08, C08F 8/00, С08С 19/00, опубл. 25.07.1989]. К недостаткам этого метода следует отнести необходимость дополнительной стадии получения надпропионовой кислоты и необходимость высаждения эпоксидированного полимера из реакционной массы.

Известен способ эпоксидирования атактического 1,2-полибутадиена в среде органического растворителя (толуол, бензол, хлористый метилен) действием мета-хлорнадбензойной кислоты [патент США 5034471, кл. C08F 136/06, C08F 36/00, C08F 4/00, опубл. 23.07.1991]. К раствору атактического 1,2-полибутадиена в хлористом метилене добавляют по каплям мета-хлорнадбензойную кислоту при мольном соотношении 1,2-полибутадиен : мета-хлорнадбензойная кислота - 1:1. Реакционная масса представляет собой суспензию, где твердую фазу образует выделяемая в ходе реакции мета-хлорбензойная кислота. Через 4 часа реакционную смесь охлаждают до -15°С и фильтруют. Процедуры охлаждения и фильтрации повторяют до исчезновения твердых примесей в фильтрате. Данный метод позволяет получить модифицированные полимерные продукты со степенью эпоксидирования до 90%.

К недостаткам данного метода следует отнести дороговизну используемого эпоксидирующего агента, необходимость обеспечения низких температур. Недостатком способа является также сложность процесса, требующая неоднократную фильтрацию реакционной массы.

Наиболее близким к изобретению по технической сущности и достигаемому эффекту является способ получения эпоксидированных 1,2-полибутадиенов, заключающийся во взаимодействии раствора 1,2-полибутадиена в органическом растворителе (толуол, бензол, хлороформ) с эпоксидирующим агентом, в качестве которого используют смесь пероксида водорода и карбоновой кислоты [патент США 4528340, кл. С08С 19/06, C08G 59/16, С08С 19/00, C08G 59/00, опубл. 09.07.1985]. В качестве карбоновой кислоты используют насыщенные карбоновые кислоты, содержащие от 1 до 10 атомов углерода. Мольное соотношение 1,2-полибутадиен : карбоновая кислота : Н2O3 составляет 1:0,01-5:0,01-5. Взаимодействие реагентов проводят при температуре от 5 до 90°С в течение 5-8 ч, постепенно дозируя раствор карбоновой кислоты и 30%-ного водного раствора пероксида водорода при интенсивном перемешивании. Полученную реакционную массу промывают дистиллированной водой и высаживают полимер метанолом. Степень функционализации (превращения ненасыщенных звеньев в эпоксидные группы) 1,2-полибутадиена составляет 5-60%.

Недостатками данного метода являются необходимости проведения процесса при повышенных температурах (до 90°С) и в течение довольно продолжительного времени до 8 ч, возможность протекания в условиях проведения процесса побочных реакций, связанных с раскрытием эпоксидных групп в модифицированном полимере, проведение процесса эпоксидирования 1,2-полибутадиена в среде пожаровзрывоопасных органических растворителей, необходимость выделения конечного продукта из реакционной массы с использованием токсичного метанола и необходимость высушивания полимера, что увеличивает энергетические затраты на получение целевого продукта.

Технической задачей данного изобретения является разработка способа получения эпоксидированных 1,2-полибутадиенов, характеризующегося более высоким уровнем безопасности, исключение использования в процессе синтеза органических растворителей, снижение энергетических затрат, повышение качества целевого продукта.

Указанная техническая задача достигается тем, что в предложенном способе получения эпоксидированных 1,2-полибутадиенов, заключающемся во взаимодействии нетканого материала, состоящего из волокон 1,2-полибутадиена (диаметр волокон 1,1-3,5 мкм, поверхностная плотность нетканого материала 40-80 г/см2) с эпоксидирующим агентом, содержащим карбоновую кислоту и пероксид водорода, в качестве карбоновой кислоты используют муравьиную кислоту при мольном соотношении 1,2-полибутадиен : муравьиная кислота 1,0:0,2-1,0, 1,2-полибутадиен : пероксид водорода 1,0:0,5-2, а синтез проводят при температуре 10-30°С, в течение 1-4 ч. В качестве исходного 1,2-полибутадиена используют атактический или синдиотактический 1,2-полибутадиен со среднечисловой молекулярной массой Мn от 30000 до 150000 и содержанием в макромолекулах звеньев 1,2- и 1,4-полимеризации 60-95 и 5-40 мол.% соответственно.

При реализации предлагаемого способа использовали промышленные образцы 1,2-полибутадиена производства ОАО «Ефремовский завод СК» и полимеры марки JSR RB производства «Japan Synthetic Rubber Со.» (Япония). Образец 1,2-полибутадиена очищали переосаждением в системе хлороформ-этанол, далее полимер дважды промывали спиртом и сушили под вакуумом при 60°С до постоянной массы. В качестве исходных компонентов эпоксидирующего агента применяли муравьиную кислоту в виде 0,20-0,35 М водного раствора (ГОСТ 5848-73) и пероксида водорода (ГОСТ 177-88) в виде 0,1 М раствора.

Пример 1. Нетканые материалы, состоящие из волокон 1,2-полибутадиена, получали по следующей методике [Xiufeng Наоа. Xuequan Zhang. Syndiotactic 1,2-polybutadiene fibers produced by electrospinning. Materials Letters. 2007, 61. 1319-1322]. Раствор 1,2-полибутадиена в хлористом метилене подвергли электроформованию при следующих условиях: напряжение между катодом и анодом 13-25 кВ, расстояние между флиерой и коллектором 10-17 см, концентрация раствора 1,2-полибутадиена 3-7%. Получены нетканые материалы, состоящие из волокон 1,2-полибутадиена: диаметр волокон 0,8-5,1 мкм, поверхностная плотность 32,1-91,0 г/м2.

Данное изобретение иллюстрируется следующими примерами.

Пример 2. В стеклянный реактор, снабженный обратным холодильником, помещали 1 г (0,019 моль) нетканого материала, состоящего из волокон 1,2-полибутадиена: диаметр волокон 2,18±0,21 мкм, поверхностная плотность материала 67,82 г/м2. Использовали атактический 1,2-полибутадиен со среднечисловой молекулярной массой Мn=150000, содержанием звеньев 1,2- и 1,4-полимеризации 76 и 24 мол.% соответственно. К образцу полимерного материала прибавляли смесь 2,86 мл (0,038 моль) 50%-ного раствора муравьиной кислоты и 3,5 мл (0,038 моль) пероксида водорода. Мольное соотношение 1,2-полибутадиен : муравьиная кислота : пероксид водорода 1,0:2,0:2,0. Полученную массу выдерживали при 20°С в течение 3 ч. После окончания синтеза образцы нетканого полимерного материала отделяли от реакционной смеси и промывали дистиллированной водой до рН 7-8 и сушили в вакууме при температуре 40°С в течение 5 ч. Получили 1,06 г эпоксидированного атактического 1,2-полибутадиена со степенью функционализации 6,4% с количественным выходом (>99%). В ИК-спектре модифицированного эпоксидированного 1,2-полибутадиена отсутствуют сигналы в области 3000-3600 см-1, характерные для гидроксильных групп, что указывает на отсутствие побочных реакций, связанных с раскрытием эпоксидных групп.

Пример 3. В стеклянный реактор, снабженный обратным холодильником, помещали 1 г (0,019 ммоль) нетканого материала, состоящего из волокон 1,2-полибутадиена: диаметр волокон 1,34±0.21 мкм, поверхностная плотность материала 53,33 г/м2. Использовали синдиотактический 1,2-полибутадиен со среднечисловой молекулярной массой Mn=150000, содержанием звеньев 1,2- и 1,4-иолимеризации 86 и 14 мол.% соответственно. К образцу полимерного материала прибавляли смесь 2,86 мл (0,038 моль) 50%-ного раствора муравьиной кислоты и 3,5 мл (0,038 моль) пероксида водорода. Мольное соотношение синдиотактический 1,2-полибутадиен : муравьиная кислота : пероксид водорода 1,0:2,0:2,0. Полученную массу выдерживали при 20°С в течение 4 ч. После окончания синтеза образцы полимерного материала отделяли от реакционной смеси и промывали дистиллированной водой до рН 7-8 и сушили в вакууме при температуре 40°С в течение 5 ч. Получили 1,08 г эпоксидированного синдиотактического 1,2-полибутадиепа со степенью функционализации 7,1% с количественным выходом (>99%). В ИК-спектре модифицированного эпоксидированного 1,2-полибутадиена отсутствуют сигналы в области 3000-3600 см-1,характерные для гидроксильных групп, что указывает на отсутствие побочных реакций, связанных с раскрытием эпоксидных групп.

Массовую долю эпоксидных групп в полимере определяют по следующей методике [Jay R.R. Direct Titration of Epoxy Compounds and Aziridines. Anal. Chem., 1964, 36(3): 667-668]. К раствору анализируемого образца в толуоле добавляют рассчитанное количество раствора НСlO4 и перемешивают в течение 2 ч. По окончании перемешивании к раствору добавляют фенолфталеин и титруют водным раствором гидроксида натрия. Степень эпоксидирования рассчитывают по формуле:

способ получения эпоксидированных 1,2-полибутадиенов, патент № 2509780

где V0 и V1 - объем раствора (мл) НСlO4, израсходованного на титрование холостого и анализируемого образцов соответственно; w - навеска образца (г); N - молярная концентрации раствора НСlO4 (моль/л); 70 - молекулярная масса эпоксидированных бутадиеновых звеньев.

Диаметр волокон способ получения эпоксидированных 1,2-полибутадиенов, патент № 2509780 , мкм, 1,2-полибутадиена определяли на оптическом микроскопе Axio Imager D2m производства фирмы «Karl Zeiss».

Поверхностную плотность ткани способ получения эпоксидированных 1,2-полибутадиенов, патент № 2509780 , г/м2, определяют путем взвешивания образца ткани и расчета по формуле:

способ получения эпоксидированных 1,2-полибутадиенов, патент № 2509780

где m - масса образца ткани (г); L - длина образца ткани (мм); В - ширина образца ткани, (мм).

Примеры 4-27. Все операции процесса проводили в соответствии с примерами 2-3. Результаты экспериментов приведены в табл.1.

Для проведения процесса эпоксидирования использовали нетканые материалы диаметром волокон в интервале 1,1-3,5 мкм. Получение нетканых материалов диаметром волокон менее 1 мкм технически осложнено вследствие высокого напряжения между катодом и анодом (способ получения эпоксидированных 1,2-полибутадиенов, патент № 2509780 25 кВ) (пример 4). При эпоксидировании нетканых материалов диаметром волокон более 3,5 мкм наблюдается снижение степени эпоксидирования вследствие уменьшения площади контакта нетканого материала с эпоксидирующим агентом (пример 7). Плотность нетканых материалов поддерживали в интервале 40-80 г/м2. При уменьшении поверхностной плотности нетканого полимерного материала менее 40 г/м2 наблюдается нарушение поверхностной однородности полимерного нетканого материала (пример 8). При увеличении плотности нетканого материала более 80 г/м2 осложняется осушка конечного продукта (пример 11). Мольное соотношение 1,2-полибутадиен : муравьиная кислота 1:0,2-1,0 является наиболее оптимальным. При снижении мольного соотношения 1,2-полибутадиен : пероксид водорода ниже 1:0,2 наблюдается снижение степени эпоксидирования (пример 12). При увеличении мольного соотношения 1,2-полибутадиен : пероксид водорода выше 1:1,0 наблюдается гелирование полимера (пример 15). Мольное соотношение 1,2-полибутадиен : пероксид водорода 1:0,5-2 является наиболее оптимальным. При снижении мольного соотношения 1,2-полибутадиен : пероксид водорода 1:0,5 имеет место снижение степени эпоксидирования (пример 16). При увеличении мольного отношения 1,2-полибутадиен : пероксид водорода 1:2 наблюдается частичное гидроксилирование продукта реакции (пример 19). Температура процесса в пределах 10-30°С позволяет получать модифицированный продукты с наибольшим выходом и высокого качества. Уменьшение температуры ниже 10°С уменьшает скорость эпоксидирования и приводит к снижению выхода целевого продукта (пример 20). Увеличение температуры выше 30°С приводит к ухудшению качества целевого продукта (пример 23). Время реакции для всех экспериментов составляет 1-4 ч. Уменьшение времени реакции ниже 1 ч приводит к снижению степени эпоксидирования конечного продукта (пример 24). При увеличении времени реакции более 4 ч наблюдается ухудшение качества целевого продукта (пример 27).

В предложенном способе получения эпоксидированных 1,2-полибутадиенов модификацию 1,2-полибутадиена в виде нетканых материалов проводят действием смеси муравьиной кислоты и пероксида водорода. За счет использования 1,2-полибутадиена в виде нетканого материала достигается более высокий уровень безопасности процесса. Процесс эпоксидирования проводится в течение 1-4 ч и при температуре 10-30°С, при этом не требуется дополнительный нагрев реакционной массы, процесс эпоксидирования протекает без использования органических растворителей, тем самым достигается снижение энергетических затрат. Проводится процесс при относительно низких температурах и протекает без побочных реакций раскрытия эпоксидных групп, что обуславливает повышение качества целевого продукта.

Таким образом, предлагаемый способ дает возможность целенаправленного получения полимерных продуктов, содержащих эпоксидные группы, на основе 1,2-полибутадиенов с заданной степенью функционализации (содержанием эпоксидных групп) от 1 до 8,3%, молекулярной массой от 30000 до 150000 и содержанием в макромолекулах звеньев 1,2-полимеризации 60-95 мол.%, в зависимости от требований, предъявляемых к полимеру.

Таблица 1
Результаты экспериментов по синтезу эпоксидированных полибутадиенов
1,2-ПБ Условия процессаспособ получения эпоксидированных 1,2-полибутадиенов, патент № 2509780 , %Примечание
способ получения эпоксидированных 1,2-полибутадиенов, патент № 2509780 способ получения эпоксидированных 1,2-полибутадиенов, патент № 2509780 способ получения эпоксидированных 1,2-полибутадиенов, патент № 2509780 , мкмспособ получения эпоксидированных 1,2-полибутадиенов, патент № 2509780 , г/м2м.с.1,2-ПБ: НСООН м.с.1,2-ПБ:Н2О2 t °Cспособ получения эпоксидированных 1,2-полибутадиенов, патент № 2509780 , чспособ получения эпоксидированных 1,2-полибутадиенов, патент № 2509780 способ получения эпоксидированных 1,2-полибутадиенов, патент № 2509780
2 а.2,1867,8 1:0,71:3 2036,4 способ получения эпоксидированных 1,2-полибутадиенов, патент № 2509780
3 с.2,1867,8 1:0,71:3 2037,1 способ получения эпоксидированных 1,2-полибутадиенов, патент № 2509780
4 а., с.0,867,8 1:0,71:3 2037,4 способ получения эпоксидированных 1,2-полибутадиенов, патент № 2509780
5 а., с1,167,8 1:0,71:3 2036,1 способ получения эпоксидированных 1,2-полибутадиенов, патент № 2509780
6 а., с.3,567,8 1:0,71:3 2032,1 способ получения эпоксидированных 1,2-полибутадиенов, патент № 2509780
7 а., с.5,167,8 1:0,71:3 2031,8 снижение с.э.
8 а., с.2,132,1 1:0,71:3 2033,8 способ получения эпоксидированных 1,2-полибутадиенов, патент № 2509780
9 а., с.2,140,0 1:0,71:3 2035,2 способ получения эпоксидированных 1,2-полибутадиенов, патент № 2509780
10 а., с.2.180,0 1:0,71:3 2035,1 способ получения эпоксидированных 1,2-полибутадиенов, патент № 2509780
11 а., с.2,191,0 1:0,71:3 2034,7 способ получения эпоксидированных 1,2-полибутадиенов, патент № 2509780
12 а., с.2.167,8 1:0,11:3 2032,6 снижение с.э.
13 а., с.2,167,8 1:0,21:3 2035,2 способ получения эпоксидированных 1,2-полибутадиенов, патент № 2509780
14 а., с.2,167,8 1:1,01:3 2036,2 способ получения эпоксидированных 1,2-полибутадиенов, патент № 2509780
15 а., с.2,167,8 1:0,71:3 2033,1 частичное г.
16 а., с.2,167,8 1:0,71:0,2 2031,0 снижение с.э.
17 а., с.2.167,8 1:0,71:0,5 2034,2 способ получения эпоксидированных 1,2-полибутадиенов, патент № 2509780
18 а., с.2,167,8 1:0,71:2 2035,2 способ получения эпоксидированных 1,2-полибутадиенов, патент № 2509780
19 а., с.2,167,8 1:0,71:5 2035,8 частичное г.
20 а., с.2,167,8 1:0,71:3 031,1 снижение с.э.
21 а., с.2,167,8 1:0,71:3 1036,6 способ получения эпоксидированных 1,2-полибутадиенов, патент № 2509780
22 а., с.2,167,8 1:0,71:3 3038,3 способ получения эпоксидированных 1,2-полибутадиенов, патент № 2509780
23 а., с.2,167,8 1:0,71:3 4531,1 частичное г.
24 а., с.2,167,8 1:0,71:3 200,51,4 снижение с.э.
25а., с.2.1 67,81:0,7 1:3201 3,7способ получения эпоксидированных 1,2-полибутадиенов, патент № 2509780
26 а., с.2,167,8 1:0,71:3 2045,5 способ получения эпоксидированных 1,2-полибутадиенов, патент № 2509780
27 а., с.2,167,8 1:0,71;3 2056,9 частичное г.

а. - атактический 1,2-полибутадиен

с. - синдиотактический 1,2-полибутадиен

способ получения эпоксидированных 1,2-полибутадиенов, патент № 2509780 - диаметр волокон нетканого материала, мкм

способ получения эпоксидированных 1,2-полибутадиенов, патент № 2509780 - поверхностная плотность нетканого материала, г/м 2

с.э. - степень эпоксидирования

г. - гидроксилирование

Класс C08F8/08 эпоксидирование

способ получения эпоксидированных 1,2-полибутадиенов -  патент 2509781 (20.03.2014)
способ получения эпоксидированных 1,2-полибутадиенов -  патент 2486210 (27.06.2013)
способ получения эпоксидированных 1,2-полибутадиенов -  патент 2486207 (27.06.2013)
способ получения эпоксидированных 1,2-полибутадиенов -  патент 2465285 (27.10.2012)
способ получения эпоксидированных 1,2-полибутадиенов -  патент 2456301 (20.07.2012)
способ получения циклополиизопрена -  патент 2223973 (20.02.2004)
радиальные или звездообразные блоксополимеры и композиция клеев и герметиков -  патент 2144544 (20.01.2000)
линейные блоксополимеры -  патент 2126422 (20.02.1999)
эпоксидированный диеновый блоксополимер -  патент 2101295 (10.01.1998)
линейный или разветвленный блоксополимер и способ его получения -  патент 2083595 (10.07.1997)

Класс C08C19/06 эпоксидирование

способ получения эпоксидированных 1,2-полибутадиенов -  патент 2509781 (20.03.2014)
способ поверхностной модификации эпоксидными группами 1,2-полибутадиенов -  патент 2488599 (27.07.2013)
способ получения эпоксидированных 1,2-полибутадиенов -  патент 2486207 (27.06.2013)
слой, обжимная часть и протектор, сформированные с использованием определенной резиновой смеси, и пневматическая шина с этими элементами -  патент 2470960 (27.12.2012)
способ получения эпоксидированных 1,2-полибутадиенов -  патент 2465285 (27.10.2012)
способ получения эпоксидированных 1,2-полибутадиенов -  патент 2456301 (20.07.2012)
конструкция, включающая соединительный слой -  патент 2401743 (20.10.2010)
резиновая смесь для боковины шины и способ приготовления указанной смеси -  патент 2397997 (27.08.2010)
способ получения циклополиизопрена -  патент 2223973 (20.02.2004)
эпоксидированный диеновый блоксополимер -  патент 2101295 (10.01.1998)

Класс C08F136/06 бутадиен

способ получения эпоксидированных 1,2-полибутадиенов -  патент 2509781 (20.03.2014)
способ получения разветвленных функционализированных диеновых (со)полимеров -  патент 2497837 (10.11.2013)
способ получения бутадиеновых каучуков -  патент 2494116 (27.09.2013)
способ получения разветвленных функционализированных диеновых (со)полимеров -  патент 2487137 (10.07.2013)
способ получения эпоксидированных 1,2-полибутадиенов -  патент 2486210 (27.06.2013)
способ получения полимера с использованием каталитической композиции и каталитическая композиция на основе никеля -  патент 2476451 (27.02.2013)
способ прекращения реакции полимеризации введением полигидрокси-соединения, полимер и способ его получения -  патент 2476445 (27.02.2013)
композиция каучука и ее применение в ударопрочных пластиках -  патент 2466147 (10.11.2012)
способ получения эпоксидированных 1,2-полибутадиенов -  патент 2465285 (27.10.2012)
способ получения полимеров, содержащих дихлорциклопропановые группы -  патент 2456303 (20.07.2012)
Наверх