электроизолирующая жидкость

Классы МПК:H01B3/20 жидкости, например масла
H01B3/42 полимеры простых и сложных эфиров; полиацетали 
Автор(ы):, , , , , ,
Патентообладатель(и):Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Волгоградский государственный технический университет" (ВолгГТУ) (RU)
Приоритеты:
подача заявки:
2012-07-11
публикация патента:

Изобретение относится к области электротехники, в частности к диэлектрическим жидкостям, и может быть использовано для электроизоляции высоковольтного электрооборудования. Техническим результатом данного изобретения является экологическая безопасность, повышение эффективности и надежности работы высоковольтного электрического оборудования, дешевизна и доступность диэлектрической жидкости. Для решения технического результата предложена электроизолирующая жидкость, представляющая собой фторсодержащую диэлектрическую жидкость для электрической изоляции высоковольтного электрического оборудования, отличающаяся тем, что диэлектрическая жидкость содержит 99,95% ди(октафторпентилового) эфира и 0,05% примесей полярных газов. 2 табл., 1 пр.

Формула изобретения

Электроизолирующая жидкость, представляющая собой фторсодержащую диэлектрическую жидкость для электрической изоляции высоковольтного электрического оборудования, отличающаяся тем, что диэлектрическая жидкость содержит 99,95% ди(октафторпентилового) эфира и 0,05% примесей полярных газов.

Описание изобретения к патенту

Изобретение относится к области электротехники, в частности к диэлектрическим жидкостям, и может быть использовано для электроизоляции высоковольтного электрооборудования.

Известно, что жидкий диэлектрик в электромагнитном устройстве, находится под воздействием напряжений переменного тока различных амплитуд и частот, а также импульсных напряжений. Поэтому он должен обладать высокой электрической прочностью, высоким удельным сопротивлением, низким тангенсом угла диэлектрических потерь, высокой стабильностью при эксплуатации и хранении, высокой стойкостью к воздействию электрического и теплового полей, высокой стойкостью к окислению, определенным значением диэлектрической проницаемости с учетом особенностей электроизоляционной конструкции, совместимостью с применяемыми материалами, пожаробезопасностью, экономичностью, экологической безопасностью, обладать низкой вязкостью в диапазоне рабочих температур. Отмечается, что ни один известный жидкий диэлектрик не соответствует всем этим требованиям одновременно [Справочник по электротехническим материалам: В 3 т. Т.1 / Под ред. Ю.В. Корицкого и др. - 3-е изд., перераб, - М.: Энергоатомиздат, 1986. Т.1. - С.64-65].

В качестве фторсодержащих жидких диэлектриков наибольшее применение получили синтетические жидкости на основе хлорированных углеводородов: Фреон 215 (C 3F4Cl3), Фреон 214 (C3 F4Cl4) [Беляев В.Л. Особенности работы и конструкций многоамперных электрических аппаратов: Учеб. пособие СПб.: СЗТУ, 2005. - С.273; Жорняк Л.Б., Райкова Е.Ю., Осинская В.И. Повышение надежности и эффективности высоковольтных вводов / Bicник КДПУ iмeнi Михаила Остроградського. Випуск 4/2008 (51). Частина 1. С.95-99], что связано с их высокой термической устойчивостью, электрической стабильностью, негорючестью, повышенным значением диэлектрической проницаемости и относительно невысокой стоимостью. Однако в связи с токсичностью хлорированных углеводородов их применение сначала ограничилось, а в настоящее время почти повсеместно сокращается, хотя в эксплуатации еще имеется их значительное количество. В соответствии с Монреальским протоколом 1987 г. использование хлорфторуглеродов, имеющих высокий озоноразрушающий потенциал (ODP), к 2030 году будет запрещено. Поэтому ведущие фирмы мира, такие как BASF, Bayer, DuPont, Mitsubishi Chemical и др. заняты поиском промышленных веществ, в том числе и диэлектриков, с ODP 0. По утверждению этих фирм, таковыми должны быть вещества класса HFC - фторуглеводороды, не имеющие в составе молекулы атомов хлора [Патент RU 2071462, С07С 21/18, С07С 17/093, С07С 17/20, 10.01.1997 г.].

Наиболее близким решением к предлагаемому изобретению по технической сущности является перфтортрансформаторное масло [Жорняк Л.Б., Райкова Е.Ю., Осинская В.И. Повышение надежности и эффективности высоковольтных вводов/Вiсник КДПУ iменi Михаила Остроградського. Випуск 4/2008 (51). Частина 1. С.95-99]. Использование перфтортрансформаторного масла в качестве электроизолирующей жидкости в высоковольтном оборудовании обусловлено его высокими диэлектрическими свойствами. Однако оно имеет ряд недостатков.

Перфтортрансформаторное масло - это очищенная фракция нефти, получаемая при перегонке, кипящая при температуре от 300°C до 400°C, ингибированная антиокислительной присадкой - фторорганической жидкостью) [Коробейников С.М. Диэлектрические материалы. Учеб. пособие, Новосибирск, НГТУ, 2000. - С.43-46]. Оно имеет сложный углеводородный состав, представленный в таблице 1.

Таблица 1
1. Парафины10-15%
2. Нафтены или циклопарафины60-70%
3. Ароматические углеводороды 15-20%
4. Асфальто-смолистые вещества 1-2%
5. Сернистые соединения<1%
6. Азотистые соединения<0.8%
7. Нафтеновые кислоты <0.02%
8. Антиокислительная присадка (ионол)0.2-0.5%

Известно, что перфторированные органические соединения получают методом электрохимического фторирования, то есть введением фтора в органический субстрат с помощью электродной реакции. Он заключается в пропускании постоянного тока через раствор исходного органического соединения в безводном фтористом водороде [Патент RU 2221765, С07С 19/08, С07С 25/13, С07С 43/12, С25В 3/08, 20.01.2004 г.]. Таким образом, к основным недостаткам перфтортрансформаторного масла следует отнести сложный состав, многостадийную процедуру получения, и как следствие, высокую стоимость. Кроме того, диэлектрическая проницаемость перфтортрансформаторного масла составляет 1,8-2, что не позволяет использовать его в системах емкостных накопителей для увеличения их электрической емкости.

Техническим результатом данного изобретения является экологическая безопасность, повышение эффективности и надежности работы высоковольтного электрического оборудования, дешевизна и доступность диэлектрической жидкости.

Для решения технического результата предложена электроизолирующая жидкость, представляющая собой фторсодержащую диэлектрическую жидкость для электрической изоляции высоковольтного электрического оборудования, отличающаяся тем, что диэлектрическая жидкость содержит 99,95% ди(октафторпентилового) эфира и 0,05% примесей полярных газов.

Ди(октафторпентиловый) эфир [H(CF 2)4CH2]2O относится к полифторированным эфирам, представляет собой бесцветную жидкость, обладает высокой термической стабильностью и химической стойкостью, а также обладает водо- и маслоотталкивающими свойствами. В настоящее время соединения такого класса используются в качестве вспенивателей при производстве пенопластов, в процессах сухого травления в микроэлектронике. Отмечено возможное применение в качестве хладагентов при замене фреона 113 [Орлов А.П., Щавелев В.Б., Барабанов В.Г., Корольков Д.Н. // Тез. докл. 3-й Междунар. конф. «Химия, технология и применение фторсоединений». 6-9 июня 2001 г. СПб. Россия. 2001. - С.172].

Достижение технического результата обусловлено тем, что данную электроизолирующую жидкость получают на основе октафторпентанола - побочного продукта производства спиртов-теломеров [ТУ 301-14-1-89 - «Спирты-теломеры полифторированные технические»], из которых используется только тетрафторпропанол. Способ получения ди(октафторпентилового) эфира [H(CF2 )4CH2]2O, заключается во взаимодействии полифторированного спирта с тионилхлоридом в присутствии катализатора при ступенчатом повышении температуры от - 15°C до 50°C [Патент RU 2312097, С07С 43/12, С07С 41/01, 10.12.2007 г.]. Очистка от полярных газов (кислорода, SO2, HCl) осуществляется на сорбенте марки СаА-У (цеолите, ТУ 2163-004-05766557-97) с последующей перегонкой в токе сухого азота [Колобородов В.Г. Развитие адсорбционных исследований в криогенном отделе ННЦ ХФТИ / В.Г. Колобродов, Вопросы атомной науки и техники. 2006. № 4. Серия: Физика радиационных повреждений и радиационное материаловедение (89), С.38-46]. Таким образом, технология производства ди(октафторпентилового) эфира проста и не требует высоких энергетических и экономических затрат.

Экологическая безопасность предлагаемого диэлектрика определяется его химическим составом. Молекула ди(октафторпентилового) эфира содержит шесть атомов водорода, участвующих в процессе окисления кислородом атмосферного воздуха, что препятствует попаданию вещества в озоновый слой атмосферы. Озоноразрушающий потенциал ди(октафторпентилового) эфира относительно хлорфторуглеводородов равен нулю. Потенциал глобального потепления (GPW) относительно CO2 уменьшается с увеличением количества атомов водорода [Озонобезопасные фторуглеводороды [Текст] / Г.Ф. Терещенко, В.Г. Барабанов // Известия АН. Серия химическая. - 2004. - № 11. - С.2364-2371].

Сравнение основных электроизоляционных параметров ди(октафторпентилового) эфира с параметрами перфтортрансформаторного масла, приведенных в таблице 1, показывает, что диэлектрическая проницаемость ди(октафторпентилового) эфира в несколько раз выше, чем у перфтортрансформаторного масла, что позволяет применять предлагаемую электроизолирующую жидкость не только для погружного электрооборудования, но и в системах емкостных накопителей. Кроме того, важным показателем, характеризующим эффективность электрической изоляции, является тангенс угла диэлектрических потерь. Тангенс угла диэлектрических потерь ди(октафторпентилового) эфира при степени очистки 99,95% на порядок меньше, чем у перфтортрансформаторного масла. Таким образом, по сравнению с прототипом нагрев объема предлагаемого жидкого диэлектрика за счет возникновения токов проводимости существенно меньше. Отличительной особенностью

ди(октафторпентилового) эфира является отсутствие у него температуры вспышки, воспламенения, самовоспламенения, температурных и концентрационных пределов распространения пламени. Таким образом, применение ди(октафторпентилового) эфира способствует повышению надежности и эффективности работы высоковольтного электрического оборудования.

Таблица 2
ПараметрыПерфтортрансфор-маторное масло (прототип)Ди(октафторпенти-ловый)эфир (заявляемая жидкость)
Плотность, г/см30.84-0.89 1,800
Температура, °Cвспышки не ниже 400отсутствует
электроизолирующая жидкость, патент № 2509384 застывания -70Ниже -45
Удельное сопротивление, Ом·м10 12-10151012
Тангенс угла диэлектрических потерь10-3 10-4
Диэлектрическая проницаемость1,8-2 7,65-7,97
Электрическая прочность, кВ/мм50 50

При содержании 99,95% ди(октафторпентилового) эфира и 0,05% примесей полярных газов предлагаемая диэлектрическая жидкость имеет электроизолирующие свойства, приведенные в таблице 2, однако они существенно зависят от степени очистки. Повышенное содержание примесей ухудшает электроизолирующие свойства, в частности ведет к уменьшению пробивного напряжения и увеличению тангенса угла диэлектрических потерь. При этом возрастают токи проводимости, и как следствие, запускается механизм конвекции. Поскольку известно, что электромагнитные системы с жидкой изоляцией имеют низкую удельную теплопроводность, что предотвращает эффективную теплопередачу за счет теплопроводности, то предлагаемый жидкий диэлектрик со степенью очистки ниже 99,95% может быть использован в системах охлаждения и изоляции, в частности, в испарительных трансформаторах.

Пример

Из побочного продукта производства спиртов-теломеров [ТУ 301-14-1-89 - «Спирты-теломеры полифторированные технические»] ди(октафторпентиловый) эфир [H(CF2 )4CH2]2O получали смешением реагентов при температуре -15÷-10°C. Смесь полифторированного спирта H(CF2)4CH2OH с катализатором взаимодействует с тионилхлоридом при мольном соотношении реагентов, равном 1:(0,005-0,009):(1-1,1) соответственно, при ступенчатом повышении температуры: сначала при 20-30°C в течение 1-2 ч, затем при 30-50°C в течение 3-6 ч; выделяющиеся диоксид серы и хлористый водород отдували азотом. Получили эфир с т. кип. 103°C (2 мм рт.ст.), nDэлектроизолирующая жидкость, патент № 2509384 20 1.3385, d20электроизолирующая жидкость, патент № 2509384 4 1.7344. В результате очистки от полярных газов (кислорода, SO2, HCl), пропусканием через цеолит и перегонкой в токе сухого азота, получили продукт с содержанием 99,95% ди(октафторпентилового) эфира и 0,05% примесей полярных газов, с т. кип. 90°C (1 мм рт.ст.), nDэлектроизолирующая жидкость, патент № 2509384 20 1.3440.

Измерение диэлектрической проницаемости, удельного сопротивления и тангенса угла диэлектрических потерь для испытуемой электроизолирующей жидкости производилось в соответствии с ГОСТ 6581-75 (СТ СЭВ 3166-81). Для повышения достоверности проводимых измерений, эти же параметры сначала были измерены для глицерина, спирта и дистиллированной воды, в соответствии с ГОСТ 6709-72, для которых имеются справочные данные. Совпадение полученных результатов измерений со справочными данными для указанных жидкостей было в пределах 3%. Определение электрической прочности электроизолирующей жидкости также производилось в соответствии с ГОСТ 6581-75. Температура вспышки измерялась в открытом тигле по методике, приведенной в ГОСТ 12.1.044-89, - для химических органических продуктов. Результаты электрических испытаний для предлагаемой электроизолирующей жидкости приведены в таблице 2.

Приведенные данные показывают, что применение ди(октафторпентилового) эфира обеспечивает высокие диэлектрические показатели при повышении экологической безопасности в процессе эксплуатации и минимизации затрат на производство.

Скачать патент РФ Официальная публикация
патента РФ № 2509384

patent-2509384.pdf

Класс H01B3/20 жидкости, например масла

электрическое оборудование, содержащее диэлектрическое масло с эруковой кислотой -  патент 2516470 (20.05.2014)
электропроводящая смазка "увс суперконт" -  патент 2510089 (20.03.2014)
способ удаления нежелательных соединений серы из изоляционного масла электрического устройства -  патент 2413324 (27.02.2011)
способ обработки отложений сульфида меди в электрическом устройстве путем использования окисляющих агентов -  патент 2413323 (27.02.2011)
биологически разлагаемый жидкий диэлектрик -  патент 2411599 (10.02.2011)
электроизоляционная жидкая композиция на основе растительного масла -  патент 2405223 (27.11.2010)
смазка электропроводящая и способ ее получения -  патент 2337421 (27.10.2008)
способ и установка для введения жидкости в расплавленную массу под давлением -  патент 2335396 (10.10.2008)
кабель с повторно перерабатываемым слоем покрытия -  патент 2323494 (27.04.2008)
материал защитный кабельный -  патент 2297479 (20.04.2007)

Класс H01B3/42 полимеры простых и сложных эфиров; полиацетали 

Наверх