способ вскрытия лопаритовых концентратов

Классы МПК:C22B59/00 Получение редкоземельных металлов
C22B34/00 Получение тугоплавких металлов
Автор(ы):,
Патентообладатель(и):Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" (RU)
Приоритеты:
подача заявки:
2012-11-22
публикация патента:

Изобретение относится к металлургии редких металлов. Способ вскрытия лопаритовых концентратов включает предварительную механообработку лопаритовых концентратов и последующую обработку активированных лопаритовых концентратов 30% раствором HNO 3 при температуре 99°С. Последующей обработке подвергают активированные лопаритовые концентраты с усвоенным количеством энергии изменения параметров кристаллической решетки лопарита не мене 73 кДж/моль и запасенным суммарным количеством энергии, соответствующим поверхности областей когерентного рассеяния и микродеформаций, не менее 9,5 кДж/моль лопарита. Обеспечивается эффективное вскрытие лопаритовых концентратов с 99% извлечением РЗМ в раствор. 1 табл.

Формула изобретения

Способ вскрытия лопаритовых концентратов, включающий предварительную механообработку лопаритовых концентратов и последующую обработку активированных лопаритовых концентратов 30%-ным раствором HNO 3 при температуре 99°С, отличающийся тем, что последующей обработке подвергают активированные лопаритовые концентраты с усвоенным количеством энергии изменения параметров кристаллической решетки лопарита не менее 73 кДж/моль и запасенным суммарным количеством энергии, соответствующим поверхности областей когерентного рассеяния и микродеформаций, не менее 9,5 кДж/моль лопарита.

Описание изобретения к патенту

Изобретение относится к металлургии редких металлов, в частности к процессам вскрытия минералов тугоплавких металлов.

Лопарит относится к достаточно трудновскрываемым минералам.

Известен сернокислотный способ переработки лопаритовых концентратов (Зеликман А.Н. Металлургия тугоплавких редких металлов. - М.: Металлургия, 1986. С.244-246). Лопаритовый концентрат разлагают 85-92%-ной серной кислотой при 150-180°C, расходе кислоты 2-2,8 т/т концентрата, измельченного до крупности менее 74 мкм. Добавление сульфата аммония в количестве 0,2 т/т концентрата к серной кислоте предотвращает спекание реагирующей массы и повышает извлечение титана, тантала и ниобия в раствор. Продолжительность полного разложения лопаритового концентрата составляет 20-30 мин (степень вскрытия 99%). Продукт переработки выщелачивают водой. В твердой фазе остается большая часть РЗМ в составе малорастворимых двойных сульфатов и их изоморфной смеси с сульфатом кальция. В раствор переходят титан, ниобий и тантал.

Недостатками данного способа являются: многостадийность; высокий расход реагентов; высокая температура процесса; реализация процесса в автоклаве, что усложняет аппаратурное оформление; невозможность обеспечениея четкого разделения ценных составляющих лопарита, в результате чего получается продукция технической чистоты, поэтому необходима ее дальнейшая сложная переработка.

Известен также способ разложения лопаритовых концентратов (прямым) хлорированием, который является более простым с технологической точки зрения (там же, с.236-244). Его сущность состоит в том, что лопаритовый концентрат в смеси с коксом хлорируют при температуре 950-1050°C. Различия в летучести образующихся хлоридов компонентов лопаритового концентрата позволяют разделить его основные ценные составляющие.

Хлоридная технология переработки лопарита обеспечивает извлечение 93-94% ниобия и 86-88% тантала в технические оксиды, 96,5-97% титана в технический тетрахлорид, извлечение 95,5-96% редкоземельных металлов (РЗМ) в плав хлоридов.

Способу прямого хлорирования наряду с высокими технологическими показателями присущи следующие недостатки:

- хлор, расходуемый на хлорирование оксидов редкоземельных металлов, переходит в плав хлоридов РЗМ, который при переработке переходит в сточные воды;

- из-за наличия в лопаритовом концентрате оксидов РЗМ температуру хлорирования необходимо поддерживать на уровне 950-1050°C, что приводит к повышенной энергоемкости производства, значительному уменьшению срока службы хлоратора и увеличению количества отработанной футеровки, загрязненной радиоактивными продуктами, подлежащими захоронению в спецхранилищах.

Известен также способ фторирования лопаритовых концентратов (Карелин В.А., Карелин В.И. Фторидная технология переработки концентратов редких металлов. - Томск: Изд-во НТЛ, 2004. С.73-80). Процесс двухстадийный, проводится в пламенном реакторе или аппаратах «кипящего» слоя при температурах: на первой стадии -350-500°C; на второй - 2000°C. Помимо использования активного фтора процесс осложняется использованием специального оборудования и низким сроком его службы.

Известен также азотнокислотный способ переработки лопаритовых концентратов (Пат. 2145980 РФ, Способ переработки лопаритового концентрата / Зоц Н.В., Шестаков С.В., дата публикации 27.02.2000), который более перспективен при расширении объемов производства РЗМ, тантала, ниобия и тантала из лопаритовых концентратов. Исходный концентрат измельченный до крупности по меньшей мере 95% частиц не более 0,075 мм вскрывается раствором азотной кислоты концентрацией 650-700 г/л при температуре 115-118°C и атмосферным давлением. Для увеличения продолжительности пребывания частиц лопарита в азотной кислоте до 40 часов и увеличения вероятности их вскрытия обработка осуществляется в каскаде аппаратов. В результате такой переработки в раствор переходят соединения РЗМ и радиоактивных примесей. Тантал, титан и ниобий полностью остаются в составе гидратированных оксидов в осадке. Реализация способа позволяет сократить сброс хлор-иона со сточными водами; снизить температуру последующего хлорирования осадка выщелачивания до 800°C; уменьшить расходы реагентов (кокса и хлора).

Недостатками данного способа является; значительный расход реагента и высокая продолжительность процесса.

Известен также способ азотнокислотного вскрытия лопаритового концентрата с применением предварительной механоакивации в центробежной планетарной мельнице (Медведев А.С. Выщелачивание и способы его интенсификации. - М.: МИСиС. 2005. С.140-144) предполагающий проведение предварительной механообработки лопаритового концентрата в планетарной мельнице с развиваемым ускорением 25g в течение 15 мин в «сухом» режиме. После механообработки лопаритовый концентрат подвергается обработке 25-56%-ными растворами азотной кислоты при температуре 90-100°C, Т:Ж=1:(3способ вскрытия лопаритовых концентратов, патент № 2506333 4) и продолжительности 6 часов.

В результате извлекалось в азотнокислый раствор: без активации ~9% РЗМ, после 15 мин. активации 98-99% РЗМ.

Недостатками данного способа являются: высокая продолжительность механоактивации; применение концентрированных растворов азотной кислоты. Степень активации определяется только по продолжительности механообработки, что при изменении параметров активации или активатора не дает возможности практического применения данного способа ввиду отсутствия методов контроля степени деформации кристаллических решеток фаз концентрата. Кроме того, как показано в работе А.С. Медведева, степень извлечения ценного компонента сильно зависит от условий переработки активированного сырья.

Известен способ вскрытия лопаритовых концентратов (Богатырева Е.В. и др., Применение рентгеноструктурного анализа для оценки реакционной способности фазы лопарита после механоактивации, Сборник трудов Международной научно-практической конференции «Научные исследования и их практическое применение. Современное состояние и пути развития 2010», 4-15 октября, 2010, Одесса), включающий предварительную механообработку лопаритовых - концентратов и последующую обработку активированных лопаритовых концентратов 30% раствором HNO 3 при температуре 99°C. Установлена возможность прогнозирования реакционной способности лопаритового концентрата, однако, в данном способе не определено пороговое значение усвоенного количества энергии изменения параметров кристаллической решетки лопарита и не определено пороговое значение запасенного суммарного количества энергии поверхности областей когерентного рассеяния и микродеформации, которые обеспечивают эффективное вскрытие лопаритовых концентратов.

Изобретение решает задачу упрощения процессов вскрытия лопаритовых концентратов и снижения энергозатрат на стадии предварительного активирования вскрываемого материала.

Технический результат - эффективное вскрытие лопаритовых концентратов.

Поставленная задача решается в способе вскрытия лопаритовых концентратов, включающий предварительную механообработку лопаритовых концентратов и последующую обработку активированных лопаритовых концентратов 30% раствором HNO3 при температуре 99°C. Последующей обработке подвергают активированные лопаритовые концентраты с усвоенным количеством энергии изменения параметров кристаллической решетки лопарита не мене 73 кДж/моль и запасенным суммарным количеством энергии, соответствующим поверхности областей когерентного рассеяния и микродеформаций, не менее 9,5 кДж/моль лопарита.

Оценку степени деформации кристаллической решетки лопарита проводилась по количеству усвоенной энергии с помощью методики изложенной в работе Е.В. Богатыревой, А.Г. Ермилова «Оценка доли энергии, запасенной при механической активации минерального сырья» Неорганические материалы, 2008, том 44, с.242-247:

способ вскрытия лопаритовых концентратов, патент № 2506333 Eспособ вскрытия лопаритовых концентратов, патент № 2506333 =способ вскрытия лопаритовых концентратов, патент № 2506333 Ed+способ вскрытия лопаритовых концентратов, патент № 2506333 ES+способ вскрытия лопаритовых концентратов, патент № 2506333 Eспособ вскрытия лопаритовых концентратов, патент № 2506333 ,

где способ вскрытия лопаритовых концентратов, патент № 2506333 Ed - количество энергии, усвоенной в виде изменения межплоскостных расстояний кристаллической решетки минерала:

способ вскрытия лопаритовых концентратов, патент № 2506333 Ed=KElatt.

K - коэффициент относительного изменения объема элементарной ячейки фазы концентрата (по модулю);

Elatt - энергия кристаллической решетки минерала.

способ вскрытия лопаритовых концентратов, патент № 2506333 ES - количество энергии, усвоенной в виде поверхности областей когерентного рассеивания (ОКР):

способ вскрытия лопаритовых концентратов, патент № 2506333 .

Esurf - поверхностная энергия минерала до активации;

Vmol - мольный объем минерала;

Di, D0 - размеры областей когерентного рассеивания минерала после МА и до обработки, соответственно.

способ вскрытия лопаритовых концентратов, патент № 2506333 Eспособ вскрытия лопаритовых концентратов, патент № 2506333 - количество энергии, усвоенной в виде микродеформаций:

способ вскрытия лопаритовых концентратов, патент № 2506333 .

EY - модуль Юнга минерала;

способ вскрытия лопаритовых концентратов, патент № 2506333 i, способ вскрытия лопаритовых концентратов, патент № 2506333 o - среднеквадратичная микродеформация минерала после и до МА, соответственно.

Предварительную обработку проводят до количества энергии усвоенной в виде изменения параметров кристаллической решетки лопарита не менее 73 кДж/моль и суммарного количества энергии, запасенной в виде поверхности областей когерентного рассеивания и микродеформаций не менее 9,5 кДж/моль лопарита, а последующую обработку проводят 30%-ным раствором HNO3 при температуре 99°C.

Оценка количества усвоенной энергии позволяет не только оценить, но и контролировать реакционную способность активированного материала не по степени или скорости его реагирования, то есть на конечном этапе вскрытия, а по степени его структурных нарушений сразу после извлечения из активатора.

Технический результат - снижение энергозатрат достигается за счет снижения продолжительности механообработки с 15 до 2,5 минут.

Наибольший эффект активирования проявляется при количестве энергии усвоенной в виде изменения параметров кристаллической решетки лопарита не менее 73 кДж/моль и суммарном количестве энергии, запасенном в виде поверхности областей когерентного рассеивания и микродеформаций не менее 9,5 кДж/моль лопарита. Степень извлечения РЗМ в азотнокислый раствор при этом составляет 99%. У неактивированного лопарита, в тех же условиях вскрытия, она составила 1,5%.

При количестве энергии усвоенной в виде изменения параметров кристаллической решетки лопарита 73,4 кДж/моль и снижении суммарного количества энергии, усвоенной в виде областей когерентного рассеивания и микродеформации до 5,8 кДж/моль лопарита сопровождается снижением степени извлечения РЗМ до 76% (в тех же условиях выщелачивания).

Снижение количества усвоенной энергии в виде изменения параметров кристаллической решетки лопарита до 21 кДж/моль и суммарного количества энергии, усвоенной в виде областей когерентного рассеивания и микродеформации до 3,9 кДж/моль лопарита сопровождается снижением степени извлечения РЗМ до 26,5% (в тех же условиях выщелачивания).

Механоактивации подвергали лопаритовый концентрат крупностью 89,9% фракции (-0,100+0,010) мм, содержащего, %: 21,67 Ti; 27,44 РЗЭ; 5,73 Nb; 5,29 Ca; 5,12 Na; 1,02 Si; 0,49 Ta; 0,43 Th.

Активацию проводили в центробежной планетарной мельнице марки ЛАИР-0.015.

Усвоенное количество энергии изменения параметров кристаллической решетки лопарита и суммарное количество энергии, соответствующее поверхности областей когерентного рассеивания и микродеформаций, могут быть оценены в процессе механообработки на периодически отбираемых пробах лопаритового концентрата либо может быть спрогнозировано заранее путем проведения пробной механоактивации при различных режимах.

Конкретные примеры исполнения представлены в таблице. Обозначения в таблице:

Мш:Мк - соотношение массы мелющих тел и массы загруженного концентрата.

Z - степень заполнения барабана мельницы шарами, %.

способ вскрытия лопаритовых концентратов, патент № 2506333 а - продолжительность механообработки (активации).

Т:Ж - соотношение твердой и жидкой составляющих в пульпе при выщелачивании.

Elatt=16675,5 кДж/моль (определена методом Ферсмана); Vmol=37,91 см3/моль.

Esurf=1,39 Дж/м 2 и EY=199,26 ГПа (определены по методике изложенной в работе Зуев В.В., Аксенова Г.А., Мочалов Н.А. и др. Исследование величин удельных энергий кристаллических решеток минералов и неорганических кристаллов для оценки их свойств/Обогащение руд. 1999. № 1-2. С.48-53).

Представленные данные показывают, что количество усвоенной энергии в виде областей когерентного рассеивания и микродеформаций коррелируется со степенью извлечения ценного компонента. Данные по условиям механоактивации приведены, поскольку это единственные реперы на сегодняшний день, используемые большинством исследователей.

Таблица
Соотношение количеств усвоенных энергий и степени извлечения РЗМ раствор
№ образцаРежимы механоактивации Структурные характеристики лопарита по РСАКоличество усвоенной энергии, кД ж/мольРежимы выщелачиванияИзвлечение РЗМ в раствор, %
Мш:Мк Z, %способ вскрытия лопаритовых концентратов, патент № 2506333 а, минПараметры решетки Di, Åспособ вскрытия лопаритовых концентратов, патент № 2506333 i, %способ вскрытия лопаритовых концентратов, патент № 2506333 Ed(способ вскрытия лопаритовых концентратов, патент № 2506333 Es+способ вскрытия лопаритовых концентратов, патент № 2506333 Eспособ вскрытия лопаритовых концентратов, патент № 2506333 )Т:Ж t, °Cспособ вскрытия лопаритовых концентратов, патент № 2506333 выщ, чспособ вскрытия лопаритовых концентратов, патент № 2506333 , %способ вскрытия лопаритовых концентратов, патент № 2506333
Исх. -- -a=5,494 >50000,10 -- 1:699 630 1,52
c=7,783
120:1 150,5 a=5,4953510 0,1117,5 0,91:6 996 305,06
c=7,772
2 20:115 2,5a=5,484 6330,28 73,45,8 1:699 630 76,13
c=7,777
380:1 600,5 a=5,4951093 0,144,0 3,01:6 996 3011,31
c=7,782
4 80:160 2,5a=5,486 3810,39 74,19,9 1:699 630 99,7
c=7,771
55:1 152,5 a=5,4931571 0,1412,5 2,11:6 996 309,59
c=7,780
6 20:160 2,5a=5,494 8570,17 21,03,9 1:699 630 26,53
c=7,777
780:1 602,0 a=5,484355 0,1773,4 9,11:6 996 3092,10
c=7,777

Скачать патент РФ Официальная публикация
патента РФ № 2506333

patent-2506333.pdf

Класс C22B59/00 Получение редкоземельных металлов

способ извлечения редкоземельных элементов из экстракционной фосфорной кислоты при переработке хибинских апатитовых концентратов -  патент 2528692 (20.09.2014)
способ извлечения редкоземельных металлов и получения строительного гипса из фосфогипса полугидрата -  патент 2528576 (20.09.2014)
способ извлечения редкоземельных металлов и получения строительного гипса из фосфогипса полугидрата -  патент 2528573 (20.09.2014)
способ извлечения редкоземельных металлов из фосфогипса -  патент 2526907 (27.08.2014)
способ переработки лопаритового концентрата -  патент 2525951 (20.08.2014)
способ извлечения редкоземельных элементов из экстракционной фосфорной кислоты -  патент 2525947 (20.08.2014)
способ переработки фосфогипса -  патент 2525877 (20.08.2014)
способ вскрытия перовскитовых концентратов -  патент 2525025 (10.08.2014)
способ извлечения редкоземельных элементов из гидратно-фосфатных осадков переработки апатита -  патент 2524966 (10.08.2014)
способ очистки фосфатно-фторидного концентрата рзэ -  патент 2523319 (20.07.2014)

Класс C22B34/00 Получение тугоплавких металлов

Наверх