способ изготовления комплексной нанодисперсной добавки для бетонной смеси

Классы МПК:C04B22/06 оксиды; гидроксиды
C04B24/18 лигносульфоновые кислоты, их производные, например сульфитный щелок
B82B3/00 Изготовление или обработка наноструктур
C04B111/20 сопротивление химическому, физическому или биологическому воздействию
Автор(ы):,
Патентообладатель(и):Общество с ограниченной ответственностью "Малое инновационное предприятие "Нанокомпозит-БГИТА" (RU)
Приоритеты:
подача заявки:
2012-03-27
публикация патента:

Изобретение относится к строительству и промышленности строительных материалов, в частности к способам изготовления комплексных нанодисперсных добавок в бетонные смеси. Технический результат - увеличение подвижности бетонной смеси, повышение прочности, плотности, снижение водопоглощения бетона, ускорение твердения строительных изделий и конструкций. В способе изготовления комплексной нанодисперсной добавки для бетонной смеси, полученной путем ультразвукового диспергирования водной суспензии, полученной смешением шунгита, суперпластификатора С-3 и воды, сначала получают твердую фазу суспензии совместным помолом в шаровой мельнице шунгита и суперпластификатора С-3 в виде сухого вещества до удельной поверхности 380-400 м2/кг, затем смешивают ее с водой, а диспергирование полученной суспензии с концентрацией твердой фазы 3% осуществляют до размера частиц 90-280 нм при частоте ультразвука 35 кГц при следующем содержании компонентов, масс.%: шунгит - 75,0-89,3, суперпластификатор С-3 - 10,7-25. 2 табл.

Формула изобретения

Способ изготовления комплексной нанодисперсной добавки для бетонной смеси, полученной путем ультразвукового диспергирования водной суспензии, полученной смешением шунгита, суперпластификатора С-3 и воды, отличающийся тем, что сначала получают твердую фазу суспензии совместным помолом в шаровой мельнице шунгита и суперпластификатора С-3 в виде сухого вещества до удельной поверхности 380-400 м 2/кг, затем смешивают ее с водой, а диспергирование полученной суспензии с концентрацией твердой фазы 3% осуществляют до размера частиц 90-280 нм при частоте ультразвука 35 кГц при следующем содержании компонентов, мас.%: шунгит - 75,0-89,3, суперпластификатор С-3 - 10,7-25.

Описание изобретения к патенту

Изобретение относится к строительству и промышленности строительных материалов, в частности к способам изготовления комплексных нанодисперсных добавок в цементные бетоны и растворы для увеличения подвижности бетонной смеси, повышения прочности, плотности бетона, снижения водопоглощения, ускорения твердения строительных изделий и конструкций.

Известна комплексная микрогранулированная добавка для бетонной смеси (патент RU № 2390509, МПК 7 С04В 22/06, опубл. 27.05.2010 г.) на основе суперпластификатора С-3, смолы древесной омыленной, алюмометилсиликоната натрия и полученная способом распылительной сушки водного раствора ее компонентов.

К недостаткам способа изготовления добавки относятся: недостаточно высокая прочность и большое водопоглощение бетона, многокомпонентность добавки, трудоемкость ее производства, связанная с получением суспензии, ее распылением и сушкой водного раствора компонентов добавки, что усложняет технологию, повышает энергоемкость способа приготовления и соответственно ведет к удорожанию продукции.

Наиболее близкой по технической сущности и достигаемому результату является способ изготовления комплексной добавки в бетонную смесь, включающую, мас.%: микродисперсный шунгит 33,3, суспензию из нанодисперс-ного шунгита с размером частиц 62-716 нм и суперпластификатора С-3 в виде сухого вещества 66,7. (Пыкин А.А., Лукутцова Н.П., Костюченко Г.В. Регулирование свойств бетонов добавками на основе нанодисперсного шунгита // Научные исследования, наносистемы и ресурсосберегающие технологии в промышленности строительных материалов: сб. докл. Междунар. науч.-практ. конф., Белгород, 5-8 окт.2010 г. - Белгород: БГТУ им. В.Г. Шухова, 2010. - Ч.1. - С.292-296; подписано к печати 22.09.2010)

Суспензия, изготовленная известным способом, получена путем ультразвукового диспергирования порошка, осуществленного совместным помолом в дисковой вибрационной мельнице шунгита и суперпластификатора С-3 до удельной поверхности 320-350 м2/кг при соотношении компонентов 1:0,6. При этом концентрация данного порошка в воде составляет 1%, а частота ультразвука - 22 кГц.

К недостаткам известного способа относятся: большое соотношение шунгита и суперпластификатора С-3, который, вследствие экранирования поверхности образующихся нанодисперсных шунгитовых частиц, снижает их положительную роль на процессы структурообразования в бетонной смеси и формирование физико-механических свойств бетона; необходимость в дополнительном введении микродисперного шунгита для компенсации указанной отрицательной роли суперпластификатора С-3, что повышает энергоемкость производства и стоимость комплексной добавки, полученной известным способом. Технический задачей предложенного изобретения является увеличение подвижности бетонной смеси, повышение прочности, плотности бетона, снижение водопо-глощения, ускорение твердения строительных изделий и конструкций

Техническая задача достигается за счет того, что в способе изготовления комплексной нанодисперсной добавки для бетонной смеси, полученной путем ультразвукового диспергирования водной суспензии, полученной смешением шунгита, суперпластификатора С-3 и воды, сначала получают твердую фазу суспензии совместным помолом в шаровой мельнице шунгита и суперпластификатора С-3 в виде сухого вещества до удельной поверхности 380-400 м 2/кг, затем смешивают ее с водой а диспергирование полученной суспензии с концентрацией твердой фазы 3% осуществляют до размера частиц 90-280 нм при частоте ультразвука 35 кГц и следующем содержании компонентов, мас.%: шунгит 75,0-89,3, суперпластификатор С-3 10,7-25,0.

Выбор шаровой мельницы, времени операции, а также использование суперпластификатора С-3 обусловлены возможностью повышения эффективности измельчения шунгита до порошка с большей удельной поверхностью при минимальных затратах энергии на помол.

В связи с лучшей размалываемостью шунгита, он более предпочтителен как дисперсный носитель, чем кварцевый песок, шлаки и другие минеральные добавки. Адсорбирование молекул суперпластификатора на поверхности шунгитовых частиц способствует лучшему их измельчению в результате развития дефектов в структуре минеральной кремнеземсодержащей составляющей, а также уменьшению агрегации вновь образующихся микрочастиц, их налипанию на мелющие тела и стенки шаровой мельницы.

Известно, что характерной особенностью шунгита является наличие у него двухкаркасной структуры, состоящей из достаточно равномерно распределенных минеральных кристаллических частиц с преобладанием кремнезема способ изготовления комплексной нанодисперсной добавки для бетонной   смеси, патент № 2500634 -модификации размерами от 1-2 до 10-12 мкм и матрицы из сферических, пустотелых, многослойных фуллереноподобных глобул аморфного углерода с размерами 10-20 нм. Несмотря на отсутствие химических связей между кремнеземом и углеродом, в составе шунгитов они представляют собой две взаимопроникающие фазы с контактной поверхностью около 20 м2/г и не разделяются даже при диспергировании до размеров 1 мкм.

Использование тонко дисперсных шунгитовых наполнителей в составе цементных композиций вызывает ряд технологических проблем, связанных со сложностью получения гомогенной смеси и обеспечения равномерного распределения шунгитовых микрочастиц в объеме цементной матрицы. Кроме того, между частицами цемента и шунгита практически отсутствует адгезия. Наличие гидрофобной углеродной пленки на поверхности кремнезема в структуре шунгита приводит к сегрегации шунгитового наполнителя и цементных частиц, а ее сорбирующие свойства способствуют формированию структуры порового пространства, не заполненного твердой фазой новообразований цементного камня. При этом потенциально полезные элементы шунгита, в частности кремнезем, связаны и не проявляют своих свойств.

Установлено, что в результате ультразвукового диспергирования шунгитового порошка в воде происходит разделение ее углеродной и кремнеземистой фаз. При этом кремнеземистая составляющая шунгита, отделенная от углерода, под действием ультразвука подвергается эрозии и диспергированию с образованием наноразмерных частиц с аморфизированным поверхностным слоем. В свою очередь анионы суперпластификатора С-3 препятствуют обратной агрегации аморфных углеродных наноструктур и образующихся наночастиц SiO 2.

Предлагаемый способ изготовления комплексной нанодисперсной добавки для бетонной смеси осуществляется в следующей последовательности. Предварительно взвешанные в необходимом массовом соотношении шунгит и суперпластификатор С-3 перемешивают и совместно измельчают в шаровой мельнице до получения тонко дисперсного порошка. После дозирования воды и полученного порошка осуществляют загрузку компонентов в ультразвуковой механоактиватор, где они перемешиваются до образования однородной суспензии. Далее проводят ультразвуковое диспергирование полученной суспензии.

Пример

В качестве исходных сырьевых материалов при осуществлении предлагаемого способа изготовления комплексной нанодисперсной добавки применяли:

- шунгитовый щебень фракции 5-10 мм разновидности III с содержанием диоксида кремния 51-67% и 28-32% аморфного углерода;

- суперпластификатор С-3 в виде сухого вещества (ТУ 5870-002-58042865-03).

Для приготовления 1000 л добавки смешивали 970 л водопроводной воды и 30 кг порошка с удельной поверхностью 380-400 м2/кг, полученного путем совместного помола в шаровой мельнице в течение 1 часа 20,6-26,8 кг шунгитового щебня и 3,2-9,4 кг суперпластификатора С-3.

Далее в течение 15 мин проводили ультразвуковое диспергирование полученной суспензии в импульсном механоактиваторе ПСБ-4035-04 при температуре воды (20±2)°C и частоте ультразвука 35 кГц.

Для проверки эффективности комплексной нанодисперсной добавки, изготовленной предложенным способом, бетонную смесь приготавливали по следующей методике. Портландцемент марки ПЦ 500 Д0 перемешивали в сухом состоянии с кварцевым песком с Мкр=1,6 и гранитным щебнем фракции 5-20 мм. Затем в полученную сухую смесь вводили добавку вместе с водой затворения в количестве 10% от массы цемента. Смесь тщательно перемешивали до однородной массы. Далее формовали образцы-кубы размерами 10×10×10 см согласно стандартной методике. Испытания образцов проводили через 1, 3, 7 и 28 суток нормального твердения.

Составы бетонных смесей, комплексных добавок и результаты испытаний образцов тяжелого бетона представлены в табл.1 и 2.

Таблица 1
Составы бетонных смесей и комплексных добавок
№ п/пРасход материалов на 1 м3, кгСодержание компонентов нанодисперсной добавки, мас.% *
цементпесокщебень водадобавка, % Микродобавка шун-гита шунгитС-3
1 (контрол.)400 6501300200 -- --
2 400650 130016010 -68,3 31,7
3 4006501300 16010 -72,527,5
4400 6501300 16010- 75,025,0
5400650 130016010 -83,3 16,7
6 4006501300 16010 -89,310,7
7400 6501300 16010- 92,47,6
прототип400650 1300160 1533,362,5** 37,5**
Примечание: *При концентрации твердой фазы 3%, воды - 97%. ** При концентрации твердой фазы 1%, воды - 99%.

Таблица 2
Результаты испытаний образцов тяжелого бетона
Составы из табл.1Подвиж-ность, смПлотность, кг/м Предел прочности при сжатии, МПа, через сутки Водопоглощение (по массе), %
137 28
1 (контрол.) 7,722506,6 13,024,5 31,21,94
26,92292 12,120,6 39,845,40,90
37,5 230414,1 34,645,354,8 0,47
4 7,92312 15,338,252,0 65,20,38
58,2 234516,139,2 52,467,1 0,37
6 8,0234015,7 38,652,1 65,70,38
77,12291 13,827,8 43,443,60,57
прототип7,9 231015,3 16,143,354,2 0,45

Из данных табл.2 следует, что введение комплексной нанодисперсной добавки, изготовленной предложенным способом, в бетонную смесь в количестве 10% от массы цемента (составы 4-6), повышает прочность бетона более чем в 2 раза и снижает водопоглощение более чем в 5 раз. Кроме того, добавка, изготовленная предложенным способом, позволяет повысить прочность бетона в ранние сроки твердения: через 1 сутки - в 2,1-2,4 раза, через 3 суток - в 2,7-3 раза, через 7 суток - в 1,8-2,2 раза и подвижность бетонной смеси или сократить расход воды до 20%.

Максимальный эффект от применения комплексной нанодисперсной добавки, изготовленной предложенным способом, наблюдается у составов 4-6. Изменение соотношения данных компонентов в большую или меньшую сторону приводит к снижению эффективности добавки.

Механизм влияния комплексной нанодисперсной добавки, изготовленной по заявляемому способу, на свойства бетонной смеси и бетона связан с ускорением гидратации клинкерных минералов цемента и образования портландита Са(OH) 2. За счет взаимодействия интенсивно выделяющегося портландита с наночастицами аморфизированного кремнезема добавки, в поровом пространстве цементного камня твердеющего бетона образуется дополнительное количество эттрингита и преимущественно низкоосновных гидросиликатов кальция, способствующих уплотнению структуры и отвечающих за повышение прочности бетона. При этом аморфные углеродные наночастицы добавки выполняют роль центров кристаллизации указанных новообразований.

Предлагаемый способ изготовления комплексной нанодисперсной добавки отличается простотой и низкими энергозатратами, а применение полученной добавки в качестве ускорителя твердения бетонных смесей позволяет повышать производительность заводов товарного бетона, сборного железобетона, увеличивать оборачиваемость форм, снижать расход цемента до 30%, снижать расход электроэнергии при пропаривании изделий и конструкций.

Скачать патент РФ Официальная публикация
патента РФ № 2500634

patent-2500634.pdf

Класс C04B22/06 оксиды; гидроксиды

высокопрочный бетон -  патент 2516406 (20.05.2014)
сырьевая смесь для получения искусственной пемзы -  патент 2501752 (20.12.2013)
сырьевая смесь для получения искусственной породы -  патент 2465233 (27.10.2012)
комплексная добавка для пенобетонной смеси -  патент 2454380 (27.06.2012)
комплексная добавка для пенобетонной смеси -  патент 2443647 (27.02.2012)
высокопрочный бетон -  патент 2433099 (10.11.2011)
высокопрочный бетон -  патент 2433098 (10.11.2011)
высокопрочный бетон -  патент 2433097 (10.11.2011)
добавка для замедления схватывания гипса -  патент 2432333 (27.10.2011)
высокопрочный бетон -  патент 2425814 (10.08.2011)

Класс C04B24/18 лигносульфоновые кислоты, их производные, например сульфитный щелок

Класс B82B3/00 Изготовление или обработка наноструктур

Класс C04B111/20 сопротивление химическому, физическому или биологическому воздействию

Наверх