мостовой измеритель параметров многоэлементных rlc двухполюсников

Классы МПК:G01R17/00 Измерительные приборы, в которых осуществляется сравнение с эталонной величиной, например мостового типа
Автор(ы):
Патентообладатель(и):Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗГУ) (RU)
Приоритеты:
подача заявки:
2012-05-03
публикация патента:

Изобретение относится к измерительной технике. Мостовой измеритель параметров многоэлементных RLC двухполюсников содержит генератор импульсов напряжения, выход которого подключен ко входу четырехплечей мостовой цепи, первая ветвь которой состоит из последовательно включенных одиночного резистора в первом плече отношения и многоэлементного двухполюсника с уравновешивающими элементами в первом плече сравнения, а вторая ветвь - из одиночного резистора во втором плече отношения и одиночного резистора во втором плече сравнения, дифференциальный усилитель, входы которого соединены с выходом мостовой цепи, а выход подключен к n-каскадному дифференциатору, состоящему из n последовательно включенных дифференцирующих RC звеньев; нуль-индикатор; устройство управления, выход синхронизации которого соединен с входами синхронизации генератора импульсов и нуль-индикатора. При этом в качестве многоэлементной двухполюсной цепи с уравновешивающими элементами в плечо сравнения первой ветви введен потенциально частотно-независимый двухполюсник, который содержит две последовательно соединенные двухполюсные цепи, одна из которых состоит из параллельно включенных первого резистора и последовательно соединенных первого конденсатора и второго резистора, параллельно которому подключен второй конденсатор, другая двухполюсная цепь содержит параллельно включенные первую катушку индуктивности и последовательную цепь, состоящую из резистора и второй катушки индуктивности; свободный полюс второй двухполюсной цепи соединен с первой клеммой для подключения двухполюсной RLC цепи объекта измерения, вторая клемма для подключения двухполюсной RLC цепи заземлена. Технический результат - расширение функциональных возможностей измерителя. 1 ил. мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263

мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263

Формула изобретения

Мостовой измеритель параметров многоэлементных RLC двухполюсников, содержащий генератор импульсов напряжения, изменяющегося по закону n-й степени времени, выход которого подключен ко входу четырехплечей мостовой цепи, первая ветвь которой состоит из последовательно включенных одиночного резистора в первом плече отношения и многоэлементного двухполюсника с уравновешивающими элементами в первом плече сравнения, а вторая ветвь - из одиночного резистора во втором плече отношения и одиночного резистора во втором плече сравнения, общий вывод плеча отношения и плеча сравнения первой ветви образует первый вывод выхода мостовой цепи, а общий вывод плеча отношения и плеча сравнения второй ветви - второй вывод выхода мостовой цепи, свободный вывод плеча сравнения второй ветви моста заземлен; дифференциальный усилитель, входы которого соединены с выходом мостовой цепи, а выход подключен к n-каскадному дифференциатору, состоящему из n последовательно включенных дифференцирующих RC звеньев; нуль-индикатор, первый вход которого соединен с выходом n-го RC звена, второй вход - с выходом (n-1)-го RC звена, и т.д., n-й вход - с выходом 1-го RC звена, (n+1)-й вход - с выходом дифференциального усилителя; устройство управления, выход синхронизации которого соединен с входами синхронизации генератора импульсов и нуль-индикатора, отличающийся тем, что в качестве многоэлементной двухполюсной цепи с уравновешивающими элементами в плечо сравнения первой ветви введен потенциально частотно-независимый двухполюсник, который содержит две последовательно соединенные двухполюсные цепи, одна из которых состоит из параллельно включенных первого резистора и последовательно соединенных первого конденсатора и второго резистора, параллельно которому подключен второй конденсатор, другая двухполюсная цепь содержит параллельно включенные первую катушку индуктивности и последовательную цепь, состоящую из резистора и второй катушки индуктивности; свободный полюс второй двухполюсной цепи соединен с первой клеммой для подключения двухполюсной RLC цепи объекта измерения, вторая клемма для подключения двухполюсной RLC цепи заземлена.

Описание изобретения к патенту

Изобретение относится к информационно-измерительной технике, автоматике и промышленной электронике и может быть использовано для контроля и определения параметров объектов измерения, а также физических величин посредством параметрических датчиков.

Известен мостовой измеритель параметров многоэлементных пассивных двухполюсников по патенту РФ 2365921, G01R 17/00, Бюл. № 24, 2009, содержащий последовательно соединенные генератор импульсов напряжения, изменяющегося по закону степенных функций, в состав которого входят коммутируемые формирователи импульсов прямоугольной, линейной, квадратичной и кубичной формы, мостовую цепь для определения параметров двухполюсников с разнородными реактивными элементами (R-L-C) и нуль-индикатор. Для расширения функциональных возможностей вторая ветвь содержит многоэлементные двухполюсники и в плече отношения (с фиксированными параметрами элементов), и в плече сравнения (с регулируемыми параметрами). Недостатками такого измерителя являются:

1) наличие потерь и искажение формы питающих мостовую цепь импульсов в цепях коммутации;

2) невозможность измерения параметров двухполюсников с нулевым сопротивлением между полюсами на постоянном токе;

3) отсутствие унифицированной процедуры и сложный вид аналитических выражений для вычисления измеряемых параметров при различных конфигурациях схемы замещения объектов.

Из известных устройств наиболее близким по технической сущности и достигаемым результатам к данному изобретению является мостовой измеритель параметров многоэлементных пассивных двухполюсников по патенту РФ 2144195, G01R 17/10, Бюл. № 1, 2000. С целью упрощения аппаратуры мостовой измеритель содержит единственный генератор последовательностей импульсов напряжения кубичной формы. В измерительную диагональ моста включены входы дифференциального усилителя, а к выходу дифференциального усилителя подключены последовательно соединенные три дифференциатора. Выходы дифференциаторов, а также выход дифференциального усилителя подключены к входам нуль-индикатора. Уравновешивание моста осуществляют после окончания переходных процессов в его цепях, последовательно приводя к нулевому значению напряжения на выходах третьего, второго и первого дифференциаторов, а затем и дифференциального усилителя. Недостатками этого мостового измерителя являются:

1) сложная схема ветви с многоэлементным двухполюсником отношения и многоэлементным уравновешивающим двухполюсником, в состав которого входят регулируемые резисторы, конденсаторы и катушки индуктивности;

2) невозможность измерения параметров двухполюсников с индуктивной ветвью между полюсами, т.е. с нулевым сопротивлением на постоянном токе;

3) отсутствие унифицированной процедуры и сложный вид аналитических выражений для вычисления измеряемых параметров при различных конфигурациях схемы замещения объектов.

Задача, на решение которой направлено изобретение, состоит в расширении функциональных возможностей мостовой цепи, упрощении и унификации процедуры вычисления измеряемых параметров многоэлементных пассивных двухполюсников.

Поставленная задача решается тем, что в мостовой измеритель параметров многоэлементных RLC двухполюсников, содержащий генератор импульсов напряжения, изменяющегося по закону n-й степени времени, выход которого подключен ко входу четырехплечей мостовой цепи, первая ветвь которой состоит из последовательно включенных одиночного резистора в первом плече отношения и многоэдементного двухполюсника с уравновешивающими элементами в первом плече сравнения, а вторая ветвь - из одиночного резистора во втором плече отношения и одиночного резистора во втором плече сравнения, общий вывод плеча отношения и плеча сравнения первой ветви образует первый вывод выхода мостовой цепи, а общий вывод плеча отношения и плеча сравнения второй ветви - второй вывод выхода мостовой цепи, свободный вывод плеча сравнения второй ветви моста заземлен; дифференциальный усилитель, входы которого соединены с выходом мостовой цепи, а выход подключен к w-каскадному дифференциатору, состоящему из n последовательно включенных дифференцирующих RC звеньев; нуль-индикатор, первый вход которого соединен с выходом n-го RC звена, второй вход - с выходом (n-1)-го RC звена, и т.д., n-й вход - с выходом 1-го RC звена, (n+1)-й вход - с выходом дифференциального усилителя; устройство управления, выход синхронизации которого соединен с входами синхронизации генератора импульсов и нуль-индикатора, в качестве многоэлементной двухполюсной цепи с уравновешивающими элементами в плечо сравнения первой ветви введен потенциально частотно-независимый двухполюсник, который содержит две последовательно соединенные двухполюсные цепи, одна из которых состоит из параллельно включенных первого резистора и последовательно соединенных первого конденсатора и второго резистора, параллельно которому подключен второй конденсатор, другая двухполюсная цепь содержит параллельно включенные первую катушку индуктивности и последовательную цепь, состоящую из резистора и второй катушки индуктивности; свободный полюс второй двухполюсной цепи соединен с первой клеммой для подключения двухполюсной RLC цепи объекта измерения, вторая клемма для подключения двухполюсной RLC цепи заземлена.

Сущность изобретения поясняется чертежом (фиг.1). Мостовой измеритель параметров пассивных двухполюсников содержит генератор 1 импульсов напряжения, имеющих форму степенной функции времени:

мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263

где Um - амплитуда, tи - длительность импульса, n - целочисленный показатель степени. Выход генератора 1 подключен к диагонали питания четырехплечей мостовой электрической цепи. Первая ветвь мостовой цепи состоит из двух последовательно включенных двухполюсников, первый из которых содержит одиночный резистор 2, а второй - многоэлементную двухполюсную цепь 3. Вторая ветвь мостовой цепи состоит из двух последовательно включенных резисторов 4 и 5. Двухполюсники 2 и 4 являются плечами отношения, а двухполюсники 3 и 5 - плечами сравнения мостовой цепи. Общий вывод двухполюсников 2 и 3 служит первым выводом выхода мостовой цепи, а общий вывод двухполюсников 4 и 5 - вторым выводом вывода моста. Выход мостовой цепи соединен с симметричным входом дифференциального усилителя 6, к выходу которого подключен n-каскадный дифференциатор, содержащий n последовательно соединенных дифференцирующих RC звеньев. На рисунке представлена схема мостового измерителя с питающими импульсами кубичной формы: n=3. Каскады дифференциатора выполнены на конденсаторе 7 и резисторе 8, конденсаторе 9 и резисторе 10, конденсаторе 11 и резисторе 12. Выходы дифференцирующих RC звеньев соединены с 1-м, 2-м и 3-м входами нуль-индикатора 13, 4-й вход нуль-индикатора подключен к выходу дифференциального усилителя 6. Входы синхронизации генератора импульсов 1 и нуль-индикатора 13 подключены к выходу синхронизации устройства управления 14.

Плечо сравнения первой ветви мостовой цепи содержит многоэлементный двухполюсник 3 с регулируемыми элементами. Он состоит из двух последовательно включенных двухполюсных цепей, первая из которых содержит параллельно включенные первый резистор 15 и цепь последовательно соединенных первого конденсатора 16 и второго резистора 17, параллельно с которым включен второй конденсатор 18, вторая двухполюсная цепь содержит параллельно включенные первую катушку индуктивности 19 и последовательную цепь, состоящую из резистора 20 и второй катушки 21 индуктивности. В состав плеча сравнения первой ветви моста входит также RLC двухполюсник 22 объекта измерения. Первая клемма для подключения RLC двухполюсника объекта измерения соединена со свободным полюсом второй двухполюсной цепи, входящей в двухполюсник 3. Вторая клемма для подключения объекта измерения заземлена. В качестве примера объект измерения 22 представлен двухполюсной цепью, содержащей параллельно включенные первый резистор 23 и цепь последовательно соединенных конденсатора 24, второго резистора 25 и катушки 26 индуктивности.

Рассмотрим работу мостового измерителя. При возбуждении мостовой цепи импульсом кубичной формы

мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263

на выходах первой и второй ветвей моста появляются импульсы напряжения, которые содержат свободные и принужденные составляющие. После окончания переходных процессов в мостовой цепи устанавливаются сигналы, используемые для определения параметров двухполюсника 22. Выходное напряжение резисторного делителя R4-R5 второй ветви имеет форму питающего импульса

мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263

Выходное напряжение первой ветви содержит импульсы степенной формы с показателями степени от n до нулевой:

мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263

где Н0, Н1, Н 2, Н3 - обобщенные параметры передаточной функции H(p) первой ветви мостовой цепи. Эта функция имеет вид

мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263

где Z3(p) - операторное изображение комплексного сопротивления двухполюсника 3; Z22(p) - операторное изображение комплексного сопротивления измеряемого двухполюсника 22. Если раскрыть выражения числителя и знаменателя в (3), получим представление Н(p) в виде дробно-рациональной функции оператора p:

мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263

где величины а0, а1 , а2, мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263 в знаменателе и b0, b1, b2 , мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263 в числителе определяются конфигурацией схем двухполюсников и значениями параметров элементов. Обобщенные параметры передаточной функции Н(p) первой ветви мостовой цепи (см. Иванов В.И., Титов В.С., Голубов Д.А. Применение обобщенных параметров измерительной цепи для идентификации многоэлементных двухполюсников // Датчики и системы. - 2010. - № 8. - С.43-45) равны:

мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263 мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263 мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263

мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263

Из выражений (1) и (2) видно, что уравновешивание напряжений uвых.1(t) и uвых.2(t) в измерительной диагонали моста происходит при следующих условиях:

мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263

мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263

Выражения для обобщенных параметров Н 0, H1, H2, Н3, определяются параметрами элементов первой ветви мостовой цепи, в первую очередь, суммарным комплексным сопротивлением последовательно включенных многоэлементных двухполюсников Z(p)=Z3(p)+Z22 (p), которое также может быть представлено в форме дробно-рациональной функции оператора p:

мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263

Обобщенные параметры Z0, Z 1, Z2, Z3 комплексного сопротивления Z(p) могут быть найдены с помощью формул (5):

мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263 мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263 мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263

мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263

H-параметры первой ветви мостовой цепи связаны с Z-параметрами многоэлементного двухполюсника, образованного двухполюсниками 3 и 22. В самом деле, учитывая (3), получим:

мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263

Сопоставляя (5) и (8), можно выразить H-параметры через Z-параметры:

мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263 мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263 мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263

мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263

Таким образом, условия уравновешивания (6) и (7) выражаются более простыми формулами:

мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263

мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263

Из выражений (12) и (13) следует, что двухполюсник, образованный последовательно соединенными двухполюсниками 3 и 22, при достижении равновесия в измерительной диагонали моста становится частотно независимым, а его импеданс - вещественной величиной. Покажем это свойство на комплексной частотной характеристике Z(мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263 ), выражение для которой получим, выполнив подстановку в (8)р=jмостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263 :

мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263

Вынесем за скобки свободные члены в числителе и знаменателе:

мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263

Сопротивление двухполюсника не зависит от частоты и равно Z=Z0 при условиях:

мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263

Из выражений (9) следует, что при выполнении условий (16) все Z-параметры многоэлементного двухполюсника, кроме Z0, равны нулю.

Для достижения свойства частотной независимости многоэлементного двухполюсника в первой ветви мостовой цепи необходимо, чтобы и отдельно взятый двухполюсник 3 с регулируемыми элементами был потенциально частотно-независимым. Двухполюсная цепь 3 состоит из двух последовательно соединенных многоэлементных двухполюсников: резистивно-емкостного, который содержит первый резистор 15, параллельно которому включена последовательная цепь, состоящая из первого конденсатора 16 и параллельно соединенных второго резистора 17 и второго конденсатора 18, и резистивно-индуктивного двухполюсника, в состав которого входят параллельно включенные первая катушка индуктивности 19 и цепь, содержащая последовательно соединенные резистор 20 и вторую катушку индуктивности 21. При последовательном соединении двухполюсников происходит суммирование их Z-параметров с одинаковыми индексами. Это свойство позволяет существенно упростить процедуру нахождения выражений для условий уравновешивания через Z-параметры. Операторное изображение комплексного сопротивления двухполюсника R15-C16-R 17-C18 имеет вид

мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263 .

Z-параметры резистивно-емкостного двухполюсника равны

Z0=R15 ; мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263 ; мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263 ;

мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263

Операторное изображение комплексного сопротивления двухполюсника L19-R20-L 21 имеет вид

мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263

Z-параметры резистивно-индуктивного двухполюсника равны

мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263

Операторное изображение комплексного сопротивления двухполюсника объекта измерения r23-c 24-r25-l26 имеет вид

мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263 .

Z-параметры двухполюсника объекта измерения равны

z0=r23; мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263 ; мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263 ;

мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263

Сложим Z-параметры всех двухполюсных цепей, входящих в состав двухполюсников 3 и 22.

мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263

мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263

мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263

мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263

Для уравновешивания моста согласно (12)и(13) необходимо обеспечить условия:

мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263

мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263

Процесс уравновешивания осуществляется в такой же последовательности, в какой приведены условия равновесия (24), (25). Для того чтобы можно было избирательно регулировать амплитуды кубичной, квадратичной и линейной составляющих напряжения в измерительной диагонали моста, выходное напряжение дифференциального усилителя подается на дифференциатор, который содержит три последовательно включенных дифференцирующих RC-звена: конденсатор 7 и резистор 8, конденсатор 9 и резистор 10, конденсатор 11 и резистор 12. Выходы каскадов дифференциатора и дифференциального усилителя подключены к входам нуль-индикатора (НИ) 13. Работа НИ и генератора 1 импульсов синхронизируется устройством управления 14 (УУ). На выходе третьего каскада дифференциатора после трехкратного дифференцирования выходного напряжения дифференциального усилителя по окончании переходного процесса формируется и поступает на первый вход нуль-индикатора 13 постоянное напряжение u3RC , пропорциональное разности амплитуд кубичных составляющих выходных напряжений первой и второй ветвей мостовой цепи:

мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263

где Ku - коэффициент передачи дифференциального усилителя. Полагаем, что все RC звенья имеют одинаковые постоянные времени: R8C7=R 10C9=R12C11=RC.

Компенсация кубичной составляющей осуществляется приведением к нулю выходного напряжения третьего RC звена путем регулирования сопротивления R15 резистора 15 при установленных значениях сопротивлений R2, R4, R5 резисторов 2, 4 и 5 соответственно или регулированием сопротивления R 5 резистора 5 при фиксированных значениях сопротивлений R2, R4, R15 резисторов 2, 4 и 15.

Затем анализируют напряжение u2RC , поступающее на второй вход НИ с выхода второго RC-звена дифференциатора. В результате компенсации кубичной составляющей и двукратного дифференцирования выходного напряжение дифференциального усилителя по окончании переходного процесса напряжение u2RC будет пропорционально амплитуде квадратичной составляющей выходного напряжения первой ветви моста:

мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263 .

Компенсация квадратичной составляющей осуществляется приведением к нулю выходного напряжения второго RC-звена путем регулирования емкости конденсатора 16 при фиксированной индуктивности катушки 19, либо регулировкой индуктивности катушки 19 при фиксированной емкости конденсатора 16. При этом параметр Zмостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263 приводится к нулю: Zмостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263 =0.

Далее анализируют установившееся по окончании переходного процесса напряжение u1RC на выходе первого дифференцирующего RC-звена, которое после компенсации кубичной и квадратичной составляющих в результате дифференцирования пропорционально амплитуде линейной составляющей выходного напряжения первой ветви моста:

мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263 .

Это напряжение подается на третий вход НИ. Компенсация линейной составляющей напряжения осуществляется приведением к нулю выходного напряжения первого. RC-звена путем регулирования сопротивления резистора 17 при фиксированном сопротивлении резистора 20 или регулировкой сопротивления резистора 20 при фиксированном сопротивлении резистора 17. При этом параметр Zмостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263 приводится к нулю: Zмостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263 =0.

И, наконец, для компенсации постоянной составляющей напряжения на выходе первой ветви моста приводят к нулю выходное напряжение дифференциального усилителя 6

мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263

которое подается на четвертый вход нуль-индикатора, регулируя емкость конденсатора 18 при фиксированной индуктивности катушки 21, либо регулировкой индуктивности катушки 21 при фиксированной емкости конденсатора 18. При этом параметр Zмостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263 приводится к нулю: Zмостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263 =0.

После четырех этапов уравновешивания выходных напряжений первой и второй ветвей моста вычисляют с помощью формул (20)-(23) параметры элементов измеряемой двухполюсной RLC цепи. В частности, для приведенного примера сопротивление r23, емкость c24, сопротивление r25 и индуктивность l26 соответственно равны:

мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263 мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263

мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263

мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263

мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263

Мостовой измеритель позволяет определять параметры двухполюсников и с нулевым сопротивлением между их полюсами на постоянном токе. Например, двухэлементный двухполюсник, состоящий из параллельно включенных катушки индуктивности L и резистора R имеет комплексное сопротивление в операторной форме

мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263 .

Его Z-параметры равны: Z0=0; Z1=L; Z2=-L2/R. При подстановке Z0=0 в (24) получим условие равновесия на первом этапе в виде

мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263

На втором и третьем этапах определяем параметры двухполюсника:

мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263 ;

мостовой измеритель параметров многоэлементных rlc двухполюсников, патент № 2499263

Таким образом, получено расширение функциональных возможностей измерителя, унифицирован процесс измерений на этапах определения обобщенных параметров измеряемого двухполюсника, упрощены аналитические выражения для вычисления искомых электрических параметров элементов схемы: сопротивлений резисторов, емкостей конденсаторов, индуктивностей катушек.

Класс G01R17/00 Измерительные приборы, в которых осуществляется сравнение с эталонной величиной, например мостового типа

способ измерения вектора гармонического сигнала -  патент 2528274 (10.09.2014)
мостовой измеритель параметров двухполюсников -  патент 2527658 (10.09.2014)
мостовой измеритель параметров двухполюсников -  патент 2525717 (20.08.2014)
мостовой измеритель параметров двухполюсников -  патент 2523772 (20.07.2014)
мостовой измеритель параметров n-элементных двухполюсников -  патент 2523763 (20.07.2014)
система регистрации сигналов электромагнитных устройств -  патент 2515962 (20.05.2014)
мостовой измеритель параметров двухполюсников -  патент 2511673 (10.04.2014)
измеритель параметров двухполюсников -  патент 2509312 (10.03.2014)
мостовой измеритель параметров пассивных многоэлементных rlc двухполюсников -  патент 2509311 (10.03.2014)
мостовой измеритель параметров n-элементных двухполюсников -  патент 2509310 (10.03.2014)
Наверх