способ электрохимического осаждения актинидов

Классы МПК:C25C1/22 металлов, не отнесенных к рубрикам  1/02
Автор(ы):, ,
Патентообладатель(и):Федеральное государственное бюджетное учреждение науки Ордена Ленина и Ордена Октябрьской революции Институт геохимии и аналитической химии им. В.И. Вернадского Российской академии наук (ГЕОХИ РАН) (RU)
Приоритеты:
подача заявки:
2012-07-12
публикация патента:

Изобретение относится к области гальваностегии, в частности к электрохимическому осаждению плутония, америция и кюрия из органической среды, и может быть использовано для переработки облученного ядерного топлива, изготовления изотопных источников актинидов, а также для радиационного мониторинга объектов окружающей среды и технологических проб. Способ включает окислительное растворение исходного материала в азотной кислоте и доведение кислотности раствора до 2-8 моль/л, экстракционное извлечение актинидов из полученного азотнокислого раствора раствором дифенил(дибутил)карбамоилметилфосфин оксида в дихлорэтане в присутствии 0,001-0,1 моль/л ионной жидкости 1-бутил-3-метилимидазолий бис(трифторметилсульфонил)имида, при этом в полученный металлоорганический комплекс дополнительно вводят ионную жидкость гексафторфосфат тригексилтетрадецилфосфония в виде 1-10% раствора в этиловом спирте и ведут катодное осаждение актинидов при плотности тока 0,02-1,0 А/дм2. Изобретение позволяет повысить эффективность, экономичность осаждения и получить высокий выход целевого компонента. 4 з.п. ф-лы, 2 пр.

Формула изобретения

1. Способ электрохимического осаждения актинидов, включающий окислительное растворение исходного материала в азотной кислоте и доведение кислотности раствора до 2-8 моль/л, экстракционное извлечение актинидов из полученного азотнокислого раствора раствором дифенил(дибутил)карбамоилметилфосфин оксида в дихлорэтане (ДХЭ) в присутствии 0,001-0,1 моль/л ионной жидкости 1-бутил-3-метилимидазолий бис(трифторметилсульфонил)имида, при этом в полученный металлоорганический комплекс дополнительно вводят ионную жидкость гексафторфосфат тригексилтетрадецилфосфония в виде 1-10%-ного раствора в этиловом спирте и ведут катодное осаждение актинидов при плотности тока 0,02-1,0 А/дм2.

2. Способ по п.1, отличающийся тем, что катодное осаждение актинидов ведут на электроды из нержавеющей стали.

3. Способ по п.1, отличающийся тем, что исходный материал, в качестве которого используют твердые образцы объектов окружающей среды, предварительно подвергают сушке, гомогенизации, прокалке при температуре не менее 100°C и двойной обработке азотной кислотой при кипячении.

4. Способ по п.1, отличающийся тем, что исходный материал, в качестве которого используют твердые образцы отработанного ядерного топлива, непосредственно подвергают экстракции раствором дифенил(дибутил)карбамоилметилфосфин оксида в ДХЭ в присутствии 0,001-0,1 моль/л ионной жидкости 1-бутил-3-метилимидазолий бис(трифторметилсульфонил)имида до полного их растворения.

5. Способ по п.1, отличающийся тем, что исходный материал в жидком виде перед окислительным растворением упаривают.

Описание изобретения к патенту

Изобретение относится к гальваностегии, в частности к электрохимическому осаждению плутония, америция и кюрия из органической среды, и может быть использовано в различных областях промышленности для переработки облученного ядерного топлива, изготовления изотопных источников актинидов, а также для радиационного мониторинга объектов окружающей среды и технологических проб.

Известен способ электрохимического осаждения трансплутониевого элемента из содержащего его материала, включающий обработку исходного материала азотной кислотой, введение в полученную смесь изобутилового спирта и осаждение из полученного раствора трансплутониевого элемента при наложении электрического тока на подложку из металлов платиновой группы. Осаждение ведут при объемном соотношении изобутилового спирта и азотной кислоты 15-18:1 при кислотности раствора 2×10 -2-3,5×10-2 моль/л. [Авт. свид № 1104918, С25С 1/22, опубл. 27.06.98].

Известен также способ переработки отработанного ядерного топлива с помощью электрохимического извлечения оксидов с использованием специально выполненной кольцеобразной электролитической ванны Исходный материал представляет собой расплавленную соль, растворяющую отработанное ядерное топливо, и при этом, оксид урана, содержащийся в отработанном ядерном топливе, растворяют в расплавленной соли за счет анодной реакции окисления и одновременно выделяют в виде электролитического осадка оксида урана на поверхности катода за счет катодной реакции восстановления. Вертикальную пару электродов используют для основного электролиза, во время которого оксид урана растворяют и осаждают за счет электрохимической реакции, а параллельную пару электродов используют для вспомогательного электролиза, роль которого заключается в подавлении неравномерного электроосаждения оксида урана; а на стадии выделения МОХ, во время которой оксиды урана и плутония осаждают и выделяют в смешанном состоянии [заявка на выдачу пат. РФ № 2005110194, С25С 3/34, опубл. 10.02.06].

Недостатком указанных способов является сложность проведения процесса и его низкая эффективность.

Известен современный подход к переработке ядерного топлива с использованием электрохимического осаждения из ионных жидкостей (ИЖ.). Способ включает окислительное растворение отработанного ядерного топлива, используя Cl 2, с последующим электрохимическим восстановлением U(VI) до UO2.

Используют различные ИЖ имидазолиевого ряда, такие как C4mimCl (хлорид 1-бутил-3-метилимидазолия), C4mimBF6(тетрафторборат 1-бутил-3-метилимидазолия), C4mimNfO (нанофторбутансульфонат 1-бутил-3-метилимидазолия) и показано, что происходит двухступенчатое восстановление UO 2способ электрохимического осаждения актинидов, патент № 2493295 2+ до U(IV) через U(V). Электрохимическое восстановление UO2способ электрохимического осаждения актинидов, патент № 2493295 2+ в ИЖ - C4mimNfO при -1,0 V (по сравнению с Ag/AgCl) дает осадок окиси урана на углеродном электроде. Изучено электрохимическое поведение [UO2Cl4 ]2- в C4mimCl. Комплекс урана [UO2 Cl4]2- был растворен в C4mimCl при использовании Cs2UO2Cl4 или UO2Cl2способ электрохимического осаждения актинидов, патент № 2493295 nH2O и установлено квазиобратимое восстановление [UO2Cl4]2- до [UO2 Cl4]3-. Изучено растворение фторида урана (UF4) в C4mimCl путем окисления U(IV) до U(VI) и UO2способ электрохимического осаждения актинидов, патент № 2493295 2+, находящийся в C4mimCl был восстановлен до UO2 в результате двухступенчатого электронного перехода [Asanuma N., Harada M., Yasuike Y., Nogami M et al. Electrochemical properties ofuranyl ion in ionic liquids as media for pyrochemical reprocessing. J. Nucl. Sci. Technol. (2007)44, 3, 368-372].

Недостатками данного способа являются:

- высокая стоимость ИЖ имидазолиевого ряда;

- процесс не позволяет получить металлический уран,

- необходимость поддержания инертной атмосферы.

Известен способ электрохимического восстановления и осаждения лантанидов - La(III), Sm(III), Ru(III), в ИЖ общего состава R 4XNTF2, где X=N, Р и As. ИЖ - XNTf2 , Me4XNTf2 имеют большое электрохимическое окно (~6 V). Восстановление La(III), Sm(III), и Eu(III) идет до металлического состояния в ИЖ - тетрабутиламмония бис(трифторметилсульфонил)имид (Me3BuNnTf2) [Bhatt A.I., May I., Volkovich V.A. et al. Group 15 quaternary alkyi bistriflimides: ionic liquids with potential application in electrodeposition metal deposition and as supporting electrolytes. J. Chem. Soc. Dalton Transactions (2002), 24, 4532-4534]

Недостатками данного способа являются:

- нестабильность получаемых осадков, которые подвержены очень быстрому окислению до их соответствующих окисей во время промывки;

- стандартные потенциалы восстановления указанных выше лантанидов ближе или отрицательны по отношению к потенциалам восстановления ИЖ, что снижает фарадеевскую эффективность процесса;

- необходимость удаления кислорода и влаги струей сухого азота или другими физическими методами.

Известен способ выделения урана из растворов азотной кислоты, взятый за прототип, путем жидкостной экстракции целевого компонента раствором 1,1 М три-н-бутилфосфата (ТБФ) в 100% ИЖ - C4mimTf2N с последующим электрохимическим осаждением урана из органического раствора на стекловидном углеродном рабочем электроде при использовании циклической вольтамперометрии. Вольтамперограмма содержит единственную волну восстановления, имеющую место при пике потенциала - 1,3V (в сравнении Pd электродом сравнения). Контролируемый потенциал электролиза U(VI), экстрагируемого в фазу 1,1 М ТБФ/C4mimTf2N дает черный осадок окиси U(VI), который при нагревании или экспозиции на воздухе дает смесь окислов U(IV) и U(VI). Обедненная органическая фаза после осаждения может быть возвращена в технологический (экстракционный) цикл [Giridhar P., Venkatesan K.A., Subramaniam S. et al. Extraction of U(VI) by 1,1 M tri-n-butylphosphate/ionic liquid and the feasibility of recovery by direct electrodeposition from organic phase. J. Alloys and Compounds (2008) 448, 104-108].

Недостатками данного способа являются:

- низкая фарадеевская эффективность процесса (20-30%), что увеличивает энергозатраты на единицу полученной продукции и снижает выход последней;

- высокая стоимость и расход ИЖ - C 4mimTf2N;

- накопление в органической фазе продуктов разложения ТБФ, снижающих экстракционную эффективность смеси 1,1 M ТБФ/C4mimTf2N;

- необходимость поддержания инертной атмосферы, что требует проведения процесса в закрытом боксе при непрерывной прокачке аргона.

Технической задачей, решаемой предложенным изобретением, является создание эффективного и экономичного, обеспечивающего высокий выход целевого компонента способа выделения плутония, америция и кюрия из различных объектов - облученного оксидного ядерного топлива (ОЯТ), жидких радиоактивных отходов (ЖРО), объектов окружающей среды (ООС).

Поставленная задача решается способом электрохимического осаждения актинидов, из содержащего их материала, включающим окислительное растворение исходного материала в азотной кислоте и доведения кислотности раствора до 2-8 моль/л, экстракционное извлечение актинидов из полученного азотнокислого раствора раствором дифенил(дибутил)карбамоилметилфосфин оксида (Ph2Bu2) в ДХЭ в присутствии 0,001-0,1 мол/л ионной жидкости - 1-бутил-3-метилимидазолий бис(трифторметилсульфонил)имида ([C4mim]+Tf2N-), в полученный металлоорганический комплекс дополнительно вводят ионную жидкость - гексафторфосфат тригексилтетрадецилфосфония ([P]+ PF6способ электрохимического осаждения актинидов, патент № 2493295 -) в виде 1-10% раствора в этиловом спирте и ведут катодное осаждение актинидов при плотности тока 0,02-1,0 А/дм2.

Катодное осаждение актинидов ведут на электроды из нержавеющей стали.

Целесообразно исходный материал, в качестве которого используют твердые образцы объектов окружающей среды, предварительно подвергать сушке, гомогенизации, прокалке при температуре не менее 100°С и двойной обработке азотной кислотой при кипячении.

Целесообразно исходный материал, в качестве которого используют твердые образцы отработанного ядерного топлива, непосредственно подвергать экстракции раствором дифенил(дибутил)карбамоилметилфосфин оксида (Ph 2Bu2) в ДХЭ в присутствии 0,001-0,1 мол/л ионной жидкости - 1-бутил-3-метилимидазолий бис(трифторметилсульфонил)имида ([C4mim]+Tf2N-) до полного их растворения.

Целесообразно жидкий исходный материал перед окислительным растворением упаривать.

Ионные жидкости (ИЖ) были разработаны и применяются как электролиты. Однако электропроводность 100% ИЖ не столь велика, так как для больших органических ионов наблюдается связь между предельной подвижностью ионов, зарядом, радиусом и вязкостью жидкости по закону Вальдена - Писаржевского. Липофильные ИЖ имеют слишком высокий радиус и вязкость для того, чтобы быть эффективными электролитами. При разбавлении ИЖ большинством полярных разбавителей вязкость снижается, но электропроводность раствора не увеличивается из-за процессов ассоциации ионов. Предложенный электролит содержит [Р]+PF6способ электрохимического осаждения актинидов, патент № 2493295 - в этиловом спирте при концентрации соответствующей максимальной диссоциации электролита и, следовательно, максимальной электропроводности раствора. Ph2Bu2 и [C 4mim]+Tf2N- вводятся в раствор для комплексообразования актинидов и удержания их в растворе. Таким образом в качестве электролита используется наиболее доступная ИЖ в количестве, не превышающем 10-30% от общего объема органической фазы, а дорогостоящие комплексообразующие реагенты в количестве только 1% от этого объема. Кроме того, данный способ позволяет избежать стадии реэкстракции актинидов из органической фазы водными растворами, поскольку используемые реагенты образуют очень прочные комплексы с актинидами.

Способ осуществляют следующим образом:

1. Жидкие природные или техногенные образцы упаривают до объема: 1-100 мл и подкисляют азотной кислотой до 2-8 моль/л. Затем проводят жидкостную экстракцию актинидов раствором объема 1-10 мл дифенил(дибутил)-карбамоилметилфосфин оксида (Ph 2Bu2) в ДХЭ в присутствии 0,001-0,1 мол/л ионной жидкости - 1-бутил-3-метилимидазолий бис(трифторметилсульфонил)имида ([C4mim]+Tf2N-),

2. Твердые предварительно высушенные, гомогенизированные и прокаленные в муфеле при 500°С образцы ООС весом 1-10 г дважды обрабатывают 50 мл разбавленной азотной кислоты с концентрацией 8 моль/л при кипячении в течение 1 часа. Растворы отделяют от остатков твердой фазы методом фильтрации и соединяют. Затем проводят жидкостную экстракцию актинидов из данного водного раствора в органический раствор, содержащий 0,001-0,1 моль/л (C4 mim]+Tf2N- и 0,001-0,1 моль/л Ph2Bu2 в ДХЭ, объемом 10 мл.

3. Твердые образцы ОЯТ весом 0,1-2 г измельчают до 0,01-0,03 мм в агатовой ступке. Затем обрабатывают органическим раствором, содержащим 0,001-0,1 моль/л [C4mim]+Tf 2N- и 0,001-0,1 моль/л Ph2Bu 2 в ДХЭ, объемом 1-10 мл до полного растворения (сольватная экстракция).

4. Далее, в любой из полученных (пп.1, 3) металлоорганических комплексов актинидов дополнительно вводят ионную жидкость - гексафторфосфат тригексилтетрадецилфосфония ([P]+PF6способ электрохимического осаждения актинидов, патент № 2493295 -) в виде 1-10% раствора в этиловом спирте.

Электроосаждение актинидов ведут в стандартной тефлоновой ячейке с платиновым проволочным анодом и катодом в виде круглой мишени из нержавеющей стали диаметром 30-40 мм при комнатной температуре электролита и катодной плотности тока 0,02-1,0 А/дм 2. Время процесса 1,5 часа. Выход плутония - 70-90%, америция и кюрия - 60-80%. Мишень промывают этиловым спиртом и прокаливают на горелке.

Слой оксида актинидов на катоде устойчив к воздействию (при промывке) этилового спирта, тонкий, равномерный. Энергетическое разрешение альфа-спектра, полученного при измерении мишени, составляет не более 40 кэВ.

При необходимости для снижения объема экстракта, полученного по пунктам 1-3 инертный, разбавитель - ДХЭ может быть отогнан перед растворением экстракта в этиловом спирте.

Для снижения объема исходной экстрагирующей органической фазы может быть использована экстракционная хроматография на ТВЭКС, импрегнированных органическим раствором, содержащим 0,001-0,1 моль/л [C4mim]+Tf 2N- и 0,001-0,1 моль/л Ph2Bu 2 в ДХЭ.

Пример 1

Образец грунтовой воды из скважины Карачаевского ореола загрязнения (ФГУП ПО Маяк) объемом 2 литра, упаривают до 100 мл. В полученный рассол добавляют 20 мл концентрированной азотной кислоты и проводят экстракцию актинидов из данного водного раствора в органический раствор, содержащий 0,001-0,1 моль/л [C4mim]+ Tf2N- и 0,001-0,1 моль/л Ph2 Bu2 в дихлорэтане (ДХЭ) объемом 10 мл. В полученный органический раствор добавляют 50 мл этилового спирта и 1 г ионной жидкость ([Р]+Pf6способ электрохимического осаждения актинидов, патент № 2493295 -). Электроосаждение актинидов ведут в стандартной тефлоновой ячейке с платиновым проволочным анодом и катодом в виде круглой мишени из нержавеющей стали диаметром 30-40 мм при комнатной температуре электролита и катодной плотности тока 0,05 А/дм2. Время процесса 1,5 часа.

Выход плутония - 90%, америция и кюрия - 80%.

Пример 2

Твердые образцы двуокиси урана с содержанием 1 вес.% двуокиси плутония весом 0,1 измельчают до 0,02 мм в агатовой ступке. Затем обрабатывают органическим раствором, содержащим 0,01 моль/л [C4mim]+Tf2N - и 0,1 моль/л Ph2Bu2 в ДХЭ, объемом 5 мл до полного растворения в течение 2 часов. В полученный органический раствор добавляют 50 мл этилового спирта и 1 г ионной жидкость ([Р]+PF6способ электрохимического осаждения актинидов, патент № 2493295 -). Электроосаждение актинидов ведут в стандартной тефлоновой ячейке с платиновым проволочным анодом и катодом в виде круглой мишени из нержавеющей стали диаметром 30-40 мм при комнатной температуре электролита и катодной плотности тока 0,05 А/дм2. Время процесса 1,5 часа.

Выход плутония - 80%, америция и кюрия - 70%.

Важнейшим преимуществом ИЖ, обусловливающим их применение в этой области электрохимии, является отсутствие побочных процессов газовыделения, снижающих качество образующегося металла, а именно выделения водорода. Кроме того, отсутствие побочных процессов существенно повышает выход по току (эффективность по Фарадею).

Более того, способ экономичен поскольку:

- в качестве электролита используется не 100% ИЖ, а ее раствор в количестве 1-10 масс.% в этиловом спирте;

- а при гидрометаллургическом цикле переработки ОЯТ, ЖРО, ООС с применением принципов экстракционного TRUEX-процесса обеспечивается возможность избежать стадии реэкстракции из органической фазы и выделения актинидов непосредственно на мишень для альфа-спектрометрического определения их содержания.

Способ обеспечивает также:

- возможность применения для его для неводной переработки и аффинажа компонентов ОЯТ.

- возможность электроосаждения как для макроколичеств, так и микроколичеств актинидов.

- высокую эффективность по Фарадею для катода из нержавеющей стали (для катодов из графита или платины характерна еще большая эффективность). Выход плутония - 70-90%, америция и кюрия - 60-80%.

Класс C25C1/22 металлов, не отнесенных к рубрикам  1/02

способ очистки висмута -  патент 2514766 (10.05.2014)
способ очистки висмута -  патент 2505615 (27.01.2014)
способ электрохимической переработки отходов жаропрочных никелевых сплавов, содержащих рений, вольфрам, тантал и другие ценные металлы -  патент 2484159 (10.06.2013)
способ получения металлической сурьмы из сурьмяного сырья -  патент 2409686 (20.01.2011)
способ электрохимической переработки металлических отходов жаропрочных никелевых сплавов, содержащих рений -  патент 2401312 (10.10.2010)
способ извлечения селена из шламов электролиза меди -  патент 2393256 (27.06.2010)
способ извлечения галлия -  патент 2339717 (27.11.2008)
способ выделения ценных металлов из суперсплавов -  патент 2313589 (27.12.2007)
способ выделения рутения из нерастворимых остатков от переработки облученного ядерного топлива -  патент 2289636 (20.12.2006)
способ электрохимического рафинирования галлия -  патент 2271400 (10.03.2006)
Наверх