элемент, покрытый твердым материалом

Классы МПК:C23C16/30 осаждение соединений, смесей или твердых растворов, например боридов, карбидов, нитридов
Автор(ы):, ,
Патентообладатель(и):КЕННАМЕТАЛ ИНК. (US)
Приоритеты:
подача заявки:
2009-01-20
публикация патента:

Изобретение относится к элементу для резания, имеющему несколько слоев, нанесенных методом химического парофазного осаждения. На упомянутый элемент нанесен слой Ti1-xAlx N и/или Ti1-xAlxC, и/или Ti1-x AlxCN, где x находится в диапазоне от 0,65 до 0,95, на который нанесен слой Al2O3 в виде внешнего слоя. Получается элемент, обладающий покрытием с лучшим термоизоляционным эффектом в отношении теплопереноса. 7 з.п. ф-лы.

Формула изобретения

1. Элемент для резания, имеющий несколько слоев, нанесенных методом химического парофазного осаждения, отличающийся тем, что нанесен слой Ti1-xAlxN и/или Ti 1-xAlxC, и/или Ti1-xAlx CN, где x находится в диапазоне от 0,65 до 0,95, на который нанесен слой Al2O3 в виде внешнего слоя.

2. Элемент по п.1, отличающийся тем, что он содержит слой TiN и/или слой TiCN в качестве слоя, связующего с телом подложки, которая содержит твердый сплав, металлокерамику или керамику.

3. Элемент по п.1 или 2, отличающийся тем, что между внешним слоем Al2O3 и слоем Ti1-xAl xN, слоем Ti1-xAlxC или слоем Ti 1-xAlxCN расположен слой TiCN.

4. Элемент по п.1, отличающийся тем, что x в слое Ti1-xAl xN, слое Ti1-xAlxC или слое Ti 1-xAlxCN является таким, что 0,7элемент, покрытый твердым материалом, патент № 2491368 xэлемент, покрытый твердым материалом, патент № 2491368 0,9.

5. Элемент по п.1, отличающийся тем, что под слоем Al2O3 расположен многослойный промежуточный слой, состоящий из одного или более двойных или тройных слоев из группы (Ti1-xAlxN, Ti1-xAl xCN, Ti1-xAlxC)n,

6. Элемент по п.1, отличающийся тем, что толщина внешнего слоя находится в диапазоне от 1 мкм до 5 мкм, а толщина слоя Ti 1-xAlxN, Ti1-xAlxC или Ti1-xAlxCN находится в диапазоне от 1 мкм до 5 мкм.

7. Элемент по п.2 или 5, отличающийся тем, что толщина внешнего слоя находится в диапазоне от 1 мкм до 5 мкм, толщина слоя Ti1-xAlxN, Ti1-x AlxC или Ti1-xAlxCN находится в диапазоне от 1 мкм до 5 мкм, а толщина связующих или промежуточных слоев находится в диапазоне от 1 мкм до 5 мкм.

8. Элемент по п.1, отличающийся тем, что слой Ti1-xAlx N или Ti1-xAlxCN содержит не более чем 25% гексагонального AlN.

Описание изобретения к патенту

Изобретение относится к элементу, который покрыт твердым материалом и имеет несколько слоев из твердого материала, нанесенных методом химического парофазного осаждения (CVD).

Режущие инструменты для металлорежущих станков должны соответствовать растущим требованиям касательно твердости и прочности, в частности, при режущей обработке твердых или труднообрабатываемых материалов, таких как отпущенные или закаленные стали, посредством обработки на высоких скоростях резания. Материал режущего инструмента должен быть, в частности, износостойким, что в прошлом приводило к тому, что тела подложек на основе твердого сплава или металлокерамики, снабженные защитным покрытием с, первоначально, карбидами, нитридами или карбонитридами титана или позднее, также, слоями оксида алюминия, использовались в качестве покрытий, защищающих от износа. Многослойные покрытия, защищающие от износа, состоящие из различных твердых материалов, также известны. Например, слои оксида алюминия, расположенные на одном или более промежуточных слоев, таких как карбонитрид титана или нитрид титана, известны как покрытия, уменьшающие износ.

В документе WO 03/085152 A2 раскрыто использование слоя Ti-Al-N, который может быть выполнен методом осаждения из паровой фазы (PVD) как монофазный слой с содержанием алюминия до 60%. При более высоких содержаниях алюминия как в смеси кубического и гексагонального TiAlN, так и при даже больших содержаниях алюминия формируется лишь более мягкая и не защищающая от износа гексагональная вюрцитовая структура.

Также известно, что слои однофазного твердого материала Ti1-xAlx -N, где x=0,9, могут быть выполнены посредством CVD-метода с плазменной поддержкой. Однако, недостатками являются неудовлетворительная гомогенность состава слоя и относительно высокое содержание хлорина в слое.

Когда для производства слоев твердого материала Ti1-xAlxN использовались PVD-метод или плазменный метод CVD, использование данных слоев было ограничено температурами до 700°C. Недостаток заключается в том, что покрытие компонентов со сложными формами представляет трудности. PVD-процесс представляет собой направленный процесс, при котором сложные формы покрываются неравномерно. Плазменный метод CVD требует высокой гомогенности плазмы, поскольку плотность энергии плазмы оказывает непосредственное влияние на соотношение атомов Ti/Al в слое. Производство однофазных кубических слоев Ti 1-xAlx-N с высоким содержанием алюминия невозможно посредством CVD-процессов, используемых в промышленности.

Осаждение TiAl посредством стандартного CVD-процесса при температурах свыше 1000°C также невозможно, поскольку при таких высоких температурах метастабильный Ti1-x AlxN распадается на TiN и гексагональный AlN.

В заключение в способе, описанном в US 6238739 B1, для производства слоев Ti1-xAlxN, где x находится в диапазоне от 0,1 до 0,6 посредством термического CVD-процесса без помощи плазмы при температурах в диапазоне от 550°C до 650°C, выявлено ограничение, заключающееся в относительно малом содержании алюминия со значением xэлемент, покрытый твердым материалом, патент № 2491368 0,6. В описанном здесь способе хлориды алюминия и хлориды титана, а также NH3 и H2 используются как газовые смеси. В случае этого покрытия также следует допускать высокое содержание хлорина - до 12 атом.%.

Для того чтобы улучшить износостойкость и коррозионную стойкость, WO 2007/003648 A1 предлагает изготовление элемента, который покрыт твердым материалом и имеет однослойную или многослойную систему покрытия, которая содержит, по меньшей мере, один слой твердого материала Ti1-xAlxN, нанесенный методом CVD, для чего элемент покрывают при температурах от 700°C до 900°C методом CVD без возбуждения плазмы в реакторе, при этом галогениды титана, галогениды алюминия и реакционноспособные соединения азота, которые смешаны при повышенной температуре, используются как исходные реагенты. В результате этого получается элемент с однофазным слоем твердого материала Ti1-x AlxN с кубической структурой NaCl и стехиометрическим коэффициентом x от >0,75 до 0,93, или многофазным слоем, содержащим Ti1-xAlxN с кубической структурой NaCl и стехиометрическим коэффициентом x от >0,75 до 0,93 в качестве основной фазы и вюрцитовой структурой и/или структурой TiN xNaCl в качестве дополнительной фазы. Содержание хлорина находится в диапазоне от 0,05 до 0,9 атом.%. Также из этого документа известно, что может быть получен слой твердого материала Ti 1-xAlxN или слои, содержащие до 30% по массе компонентов аморфного слоя. Твердость полученных слоев находится в диапазоне от 2500 HV до 3800 HV.

Для улучшения адгезии слоя твердого материала Ti1-xAlx N при высокой износостойкости в документе DE 10 2007 000 512, который не является более ранней публикацией, также предлагается, что система слоев, которая наносится на тело подложки, содержит связующий слой из нитрида титана, карбонитрида титана или карбида титана, нанесенного на элемент, с последующим фазовым градиентным слоем и, наконец, внешний слой из однофазного или многофазного слоя твердого материала Ti1-xAlxN. Фазовый градиентный слой содержит на своей стороне, обращенной к связующему слою, фазовую смесь TiN/h-AlN, и с увеличением толщины слоя увеличивается содержание фазы fcc-TiAlN в количестве более 50%, с чем связано одновременное уменьшение в содержании фаз TiN и h-AlN.

Помимо износостойкости и коррозионной стойкости слоя на теле подложки из твердого сплава, металлокерамики особо важное значение имеет термоустойчивость покрытия для использования данного материала при режущей обработке, в частности, на высоких скоростях резания. В области режущей кромки режущей пластины, при обработке твердых заготовок, возникают температуры значительно выше 1000°C. При таких температурах значительный эффект имеют различные коэффициенты расширения подложек между отдельными слоями. Между отдельными слоями возникают напряжения и, поскольку высокая температура передается посредством теплового переноса от внешнего слоя к телу подложки, в самом неблагоприятном случае произойдет отделение покрытия, что сделает режущую пластину непригодной для использования.

Таким образом, задачей данного изобретения является предоставление элемента, покрытого твердым материалом, покрытие которого имеет лучший термоизоляционный эффект в отношении теплопереноса, как результат подбора отдельных слоев.

Задача достигается при помощи элемента, покрытого твердым материалом, согласно пункту 1 формулы изобретения. Элемент, покрытый твердым материалом, имеет несколько слоев со слоем Al2O 3, расположенных в виде внешнего слоя на Ti1-x AlxN и/или Ti1-xAlxC, и/или на слое Ti1-xAlxCN, где х находится в диапазоне от 0,65 до 0,95.

Использование слоя Ti1-x AlxN, Ti1-xAlxC или Ti1-x AlxCN вместо слоя TiCN, как обычно происходило в уровне техники, имеет преимущество в том, что теплопроводность слоя, расположенного под слоем Al2O3, примерно на 80% ниже, таким образом, слой Ti1-xAlx N, Ti1-xAlxC или -CN обеспечивает значительно лучшую тепловую изоляцию тела подложки. Внешний слой Al2 O3 также более коррозионностойкий и, в сравнении с внешним слоем TiCN, примерно на 50% тверже - таким образом достигается более высокая износостойкость.

Кроме того, как ни удивительно, было обнаружено, что слой Ti1-xAl xN, Ti1-xAlxC или -CN в качестве промежуточного слоя не имеет склонности к образованию трещин, в отличие от промежуточных слоев TiN или TiCN, таким образом не формируется неблагоприятная типичная система трещин, как это было в уровне техники. В частности, в случае прерывистого резания, улучшенная сопротивляемость формированию трещин продлевает время функционирования.

Слой Ti1-xAl xCN, Ti1-xAlxC или Ti1-x AlxCN может состоять из одной фазы и иметь кубическую структуру или может состоять из нескольких фаз и в дополнение к основной кубической фазе иметь дополнительную фазу с вюрцитовой структурой и/или состоящую из TiN. Аморфные компоненты слоя могут присутствовать до 30 масс.%. Содержание хлорина находится в диапазоне от 0,01 до 3 атом.%.

В еще одном варианте осуществления изобретения слой TiN и/или TiCN может использоваться в качестве слоя, связующего с телом подложки, которая содержит твердый сплав, металлокерамику или керамику, так, чтобы последовательность слоев изнутри кнаружи представляла собой TiN- или TiCN-TiAlC(N)-Al 2O3.

В целях данного изобретения также возможны слои TiCN между внешним слоем Al2O 3 и слоем Ti1-xAlxN, слоем Ti 1-xAlxC или слоем Ti1-xAlx CN.

Содержание алюминия, определенного как металл, составляет, предпочтительно, от 70% до 90%. Толщина слоя Ti 1-xAlxN, слоя Ti1-xAlx C или слоя Ti1-xAlxCN может варьироваться в диапазоне от 2 мкм до 10 мкм, предпочтительно, в диапазоне от 3 мкм до 7 мкм. Вышеупомянутый слой также может содержать долю гексагонального нитрида алюминия в количестве не более 25%.

В целях данного изобретения также возможно вместо одного промежуточного слоя иметь многослойный промежуточный слой, состоящий из одного или более двойных слоев или тройных слоев типа (Ti1-xAlxN, Ti1-xAl xC, Ti1-xAlxCN)n, где n - натуральное число. Периодический слой TiAlN/TiAlCN/TiAlC, в таком случае, имеет общую толщину, заданную суммой толщин всех отдельных слоев, находящихся в диапазоне от 1 нм до 5 нм. Общая толщина, предпочтительно, должна находиться в диапазоне от 1 мкм до 5 мкм. В самом простом случае последовательно наносят тонкие отдельные слои Ti1-xAlxN или Ti 1-xAlxCN или Ti1-xAlxC, имеющие толщину всего несколько нм, до тех пор, пока не будет достигнута желаемая общая толщина в диапазоне от 1 мкм до 5 мкм. Однако также возможно иметь систему периодических слоев, выполненную из вышеупомянутых соединений, включая слои, которые имеют подслои, имеющие градиент, в которых содержание С уменьшается или увеличивается по направлению кнаружи.

Слой TiAlN, TiAlC или TiAlCN может содержать до 30% аморфных компонентов и иметь содержание хлорина до 3 атом.%.

Для производства покрытого элемента тело подложки, содержащее твердый сплав, металлокерамику или керамику, подвергается покрытию методом химического парофазного осаждения при температурах покрытия, находящихся в диапазоне от 650°C до 900°C при внесении в газовую среду хлорида титана и хлорида алюминия, а также аммиака для производства слоя TiAlN. После того как был выполнен первый слой с толщиной от 2 мкм до 10 мкм, предпочтительно от 3 мкм до 7 мкм, стандартным способом посредством CVD-процесса наносится слой Al2 O3 с толщиной, по меньшей мере, 2 мкм, но не более 10 мкм.

Класс C23C16/30 осаждение соединений, смесей или твердых растворов, например боридов, карбидов, нитридов

элемент для резания, покрытый твердым материалом -  патент 2501887 (20.12.2013)
способ нанесения комбинированных pvd/cvd/pvd покрытий на режущий твердосплавный инструмент -  патент 2468124 (27.11.2012)
устройство для нанесения тонких пленок полупроводников и диэлектриков -  патент 2331717 (20.08.2008)
электротехническая текстурованная листовая сталь с электроизоляционным покрытием и способ получения электротехнической текстурованной листовой стали -  патент 2288297 (27.11.2006)
способ получения поликристаллического сульфида цинка -  патент 2221906 (20.01.2004)
пластина режущего инструмента и способ ее изготовления -  патент 2173241 (10.09.2001)
режущий инструмент с окисным покрытием и способ его нанесения -  патент 2131330 (10.06.1999)
тело из цементированного карбида с покрытием и способ его изготовления -  патент 2131328 (10.06.1999)
режущий инструмент и способ нанесения покрытия на него -  патент 2130823 (27.05.1999)
способ получения композиционного слоистого материала на основе твердого сплава -  патент 2064526 (27.07.1996)
Наверх