устройство для контроля положения ствола горизонтальной скважины

Классы МПК:E21B47/022 буровой скважины 
G01V5/12 с использованием источников гамма-лучей или рентгеновских лучей
Автор(ы):, ,
Патентообладатель(и):Общество с ограниченной ответственностью "ТомскГАЗПРОМгеофизика" (RU)
Приоритеты:
подача заявки:
2012-06-26
публикация патента:

Изобретение относится к буровой технике и предназначено для контроля положения ствола горизонтальной скважины между кровлей и подошвой пласта - коллектора, а также для литологического расчленения разреза в процессе бурения. Техническим результатом изобретения является повышение точности регистрации гамма-квантов, упрощение конструкции и повышение оперативности управления процессом проводки при горизонтальном и наклонно-направленном бурении скважин. Устройство содержит: установленные в кожухе телесистемы основной и направленный блоки датчиков гамма-каротажа. Направленный блок датчиков гамма-каротажа помещен в свинцовый корпус с окном для регистрации направленного гамма-излучения, которое физически соотнесено к положению отклонителя. Блоки датчиков гамма-каротажа расположены в измерительном гамма-модуле с проводным каналом связи с блоком телесистемы и снабжены электронной схемой согласования сигналов телесистемы с импульсами датчиков гамма-каротажа. 2 ил.

устройство для контроля положения ствола горизонтальной скважины, патент № 2490448 устройство для контроля положения ствола горизонтальной скважины, патент № 2490448

Формула изобретения

Устройство для контроля положения ствола горизонтальной скважины, содержащее установленные в кожухе телесистемы основной и направленный блоки датчиков гамма-каротажа, направленный блок датчиков гамма-каротажа помещен в свинцовый корпус с окном для регистрации направленного гамма-излучения, которое физически соотнесено к положению отклонителя, блоки датчиков гамма-каротажа расположены в измерительном гамма-модуле с проводным каналом связи с блоком телесистемы и снабжены электронной схемой согласования сигналов телесистемы с импульсами датчиков гамма-каротажа, содержащей блок управления, коммутатор переключения подачи питания на блоки датчиков гамма-каротажа, источник постоянного тока, высоковольтные источники питания, счетчики импульсов гамма-каротажа, микропроцессор, при этом выход сигналов телесистемы подключен к входу блока управления, определяющего вид выходного сигнала телесистемы и связанного с коммутатором, обеспечивающим переключение подачи питания на один из блоков датчиков гамма-каротажа в зависимости от вида выходного сигнала телесистемы.

Описание изобретения к патенту

Изобретение относится к буровой технике и предназначено для контроля положения ствола горизонтальной скважины между кровлей и подошвой пласта - коллектора, а также для литологического расчленения разреза в процессе бурения.

Известно устройство для контроля положения ствола горизонтальной скважины между кровлей и подошвой пласта - коллектора. Устройство содержит установленные в непосредственной близости от долота датчики гамма-каротажа, ориентированные под углом 180° друг к другу, и феррозонд, расположенный под углом 90° к диаметральной оси датчиков гамма-каротажа. Датчики гамма-каротажа и феррозонд расположены в отдельном измерительном наддолотном модуле с беспроводным электромагнитным каналом связи и снабжены электронной схемой согласования сигналов феррозонда с импульсами датчиков гамма-каротажа. Электронная схема согласования сигналов содержит блок управления, коммутатор переключения импульсов датчиков гамма-каротажа, счетчики импульсов гамма-каротажа, а также суммарный счетчик импульсов гамма-каротажа. При этом выход измерительной обмотки феррозонда подключен к входу блока управления, определяющего полярность выходного сигнала феррозонда и связанного с коммутатором. Коммутатор обеспечивает переключение каналов прохождения импульсов счетчиков гамма-каротажа в зависимости от полярности выходного сигнала феррозонда, в соответствующие счетчики импульсов гамма-каротажа, обозначенные как ГК - «верх» или ГК - «низ», выходы которых соединены с суммарным счетчиком импульсов гамма-каротажа - «сумма», соединенным с измерительной схемой наддолотного модуля. (Патент RU 2362012, класс Е21В 47/02, G01V 3/30, приоритет 21.01.2008 г.).

Недостатком известного устройства является отсутствие в конструкции упругих элементов, значительно гасящих механические вибрацию и удары, что уменьшает надежность устройства в целом, а также жесткая установка датчиков в корпусе, что приводит к соударению датчиков при воздействии вибраций и ударов. Кроме того, конструкция подвержена влиянию больших нагрузок и вибраций, что ухудшает регистрационные характеристики.

Известна аппаратура для определения направления скважины в процессе бурения в виде конструкции с направленным датчиком гамма-каротажа, содержащая ряд счетчиков Гейгера-Мюллера, расположенных в отрезке трубы над буровой коронкой и несколько магнитных и гравитационных датчиков, обеспечивающих направленную характеристику в процессе вращения датчиков гамма-каротажа. Эти ориентационные датчики включают акселерометры и магнитометры, пригодные для обнаружения изменений в ориентации и позиции приборного переводника. Акселерометры способны выявлять в реальном времени вращательное смещение от эталона по мере его возникновения в процессе бурения. Датчики магнитного потока, или магнитометры, облегчают выявление азимутальной ориентации прибора на основе магнитного поля Земли. (Патент WO 02082124, класс Е21В 47/022, G01V 3/38, приоритет 06.04.2001 г., прототип).

По данным акселерометров можно вычислить апсидальный угол гравиметра и ориентацию ряда гамма - счетчиков. Выход магнитометра являет собой синусоидальную волну, период которой является скоростью вращения, и амплитуда которой представляет позицию прибора в магнитном поле Земли. Во время вращения измеряется выход магнитометра и определяется его амплитуда от пика до пика. Обладая этой информацией и применяя известные математические формулы, устанавливают угловую позицию магнитометра в любой данный момент.

Недостаток известной аппаратуры заключается в сложности конструкции, содержащей ряд счетчиков Гейгера-Мюллера и специальный механизм со ступенчатым двигателем для позиционирования окон для пропускания излучения. Кроме того, здесь используется до 8 магнитометров и несколько акселерометров, что также усложняет схему обработки сигналов и их согласование с показаниями гамма-счетчиков.

Задачей предлагаемого изобретения является упрощение конструкции и повышение оперативности управления процессом проводки при горизонтальном бурении скважин, в частности, в маломощных пластах.

Указанная задача решается тем, что устройство для контроля положения ствола горизонтальной скважины, содержит установленные в кожухе телесистемы основной и направленный блоки датчиков гамма-каротажа. Направленный блок датчиков гамма-каротажа помещен в свинцовый корпус с окном для регистрации направленного гамма-излучения, которое физически соотнесено к положению отклонителя. Блоки датчиков гамма-каротажа расположены в измерительном гамма-модуле с проводным каналом связи с блоком телесистемы и снабжены электронной схемой согласования сигналов телесистемы с импульсами датчиков гамма-каротажа, содержащей блок управления, коммутатор переключения подачи питания на блоки датчиков гамма-каротажа, источник постоянного тока, высоковольтные источники питания, счетчики импульсов гамма-каротажа, микропроцессор. При этом выход сигналов телесистемы подключен ко входу блока управления, определяющего вид выходного сигнала телесистемы и связанного с коммутатором, обеспечивающим переключение подачи питания на один из блоков датчиков гамма-каротажа в зависимости от вида выходного сигнала телесистемы.

На фиг.1 представлен корпус измерительного гамма-модуля с блоками датчиков гамма-каротажа.

На фиг.2 изображена схема согласования сигналов телесистемы с импульсами датчиков гамма-каротажа.

Измерительный гамма-модуль 1 содержит основной блок датчиков гамма-каротажа 2 и направленный блок датчиков гамма-каротажа 3, который помещен в свинцовый корпус 4 с окном для регистрации направленного гамма-излучения 5, которое физически соотнесено к положению отклонителя. Указанные датчики помещены в выемки корпуса измерительного гамма-модуля 1 с проводным каналом связи, передающим информацию на приемный модуль основной телесистемы, обеспечивающей проводку скважины.

На фиг.2 показана схема согласования сигналов телесистемы с импульсами основного и направленного блока датчиков гамма-каротажа. Она содержит блок управления 6, к которому подключен выход сигналов телесистемы 7, источник постоянного тока 8 подведен к входу коммутатора 9. Коммутатор 9 соединен со входом высоковольтного источника питания 10 основного блока датчиков гамма-каротажа 2 и входом высоковольтного источника питания 11 направленного блока датчиков гамма-каротажа 3. Ко входу микропроцессора 14 подведены выходы счетчика импульсов 12 основного блока датчиков гамма-каротажа 2 и выходы счетчика импульсов 13 направленного блока датчиков гамма-каротажа 3.

Устройство работает следующим образом.

В процессе бурения скважины по продуктивному пласту-коллектору происходит измерение гамма-излучения основным блоком датчиков гамма-каротажа 2, который измеряет гамма-излучение всех окружающих его пород и показания передаются на микропроцессор 14 и далее на приемный модуль основной телесистемы, обеспечивающей проводку скважины. Пласт-коллектор (песчаник) отличается существенно заниженными значениями гамма-излучения, в отличие от перекрывающих пород (глина). Среднее значение естественной радиоактивности для песчаника - 10-15 Бк/кг, для глины - 50-80 Бк/кг. Увеличение значений гамма-излучения по направлению бурения свидетельствует о том, что буровая компоновка приближается к границе пласта-коллектора. Для того, чтобы определить, в каком направлении происходит увеличение значений гамма-излучения сигнал от телесистемы 7 поступает в блок управления 6, который определяет тип сигнала и управляет работой коммутатора 9, а он, в свою очередь, переключает подачу питания от источника постоянного тока 8 на направленный блок датчиков гамма-каротажа 3 через высоковольтный источник питания 11. После переключения на направленный блок датчиков гамма-каротажа 3, происходит разворот буровой компоновки на 360° с одновременным замером гамма-излучения в каждом секторе разворота, направленным блоком датчиков гамма-каротажа 3. Анализ полученных значений гамма-излучения оператором позволяет определять местонахождение границы пласта относительно компоновки бурового инструмента и управлять процессом бурения.

Класс E21B47/022 буровой скважины 

внутрискважинная калибровка инструмента при проведении изысканий пластов -  патент 2525564 (20.08.2014)
способ определения зенитного угла и азимута скважины и гироскопический инклинометр -  патент 2507392 (20.02.2014)
способ определения углов искривления скважины -  патент 2503810 (10.01.2014)
глубинный датчик расхода бурового раствора -  патент 2485309 (20.06.2013)
устройство измерения расстояния и определения направления между двумя буровыми скважинами (варианты), способ измерения расстояния и определения направления между двумя буровыми скважинами, узел соленоида устройства измерения расстояния и определения направления между двумя буровыми скважинами -  патент 2468200 (27.11.2012)
устройство для измерения зенитных и азимутальных углов скважин -  патент 2459951 (27.08.2012)
скважинный генератор -  патент 2442892 (20.02.2012)

интегрированное отображение положения ведущего переводника и ориентации торца долота -  патент 2439315 (10.01.2012)
определение расстояния магнитными средствами при бурении параллельных скважин -  патент 2436924 (20.12.2011)
биротативный скважинный генератор -  патент 2435027 (27.11.2011)

Класс G01V5/12 с использованием источников гамма-лучей или рентгеновских лучей

забойная телеметрическая система -  патент 2509210 (10.03.2014)
моделирование характеристики гамма-лучевого каротажного зонда -  патент 2475784 (20.02.2013)
прямые модели для анализа подземных формаций с помощью измерения гамма-излучения -  патент 2464593 (20.10.2012)
способ градуировки радиоизотопных плотномеров -  патент 2442889 (20.02.2012)
способ определения плотности и фотоэлектрического поглощения пласта с использованием прибора плотностного каротажа литологического разреза на основе импульсного ускорителя -  патент 2441259 (27.01.2012)
бетатрон с простым возбуждением -  патент 2439865 (10.01.2012)
калибровочная установка -  патент 2436949 (20.12.2011)
информация о радиальной плотности с бетатронного зонда плотности -  патент 2435177 (27.11.2011)
прибор для исследования качества цементирования обсадной колонны скважины в горной породе -  патент 2396552 (10.08.2010)
способ контроля геометрических и гидродинамических параметров гидроразрыва пласта -  патент 2390805 (27.05.2010)
Наверх