способ размерной электрохимической обработки

Классы МПК:B23H3/04 электроды, специально предназначенные для этого или их изготовление
Автор(ы):,
Патентообладатель(и):Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирский государственный аэрокосмический университет имени академика М.Ф. Решетнева" (СибГАУ) (RU)
Приоритеты:
подача заявки:
2011-10-19
публикация патента:

Изобретение относится к электрофизическим и электрохимическим методам обработки и может быть использовано при электрохимической обработке длинномерных деталей. В способе размерную электрохимическую обработку детали осуществляют электродом-инструментом, содержащим токопроводящий корпус с каналами, диэлектрическую прокладку и формообразующую часть с каналами для удаления газообразных продуктов реакции. Каналы в формообразующей части используемого в способе электрода-инструмента расположены в шахматном порядке и выполнены перпендикулярно рабочей поверхности формообразующей части, причем поперечный шаг между каналами равен поперечному размеру канала, а продольный шаг определяют в зависимости от режимов обработки и свойств электролита. Изобретение позволяет повысить точность электрохимической обработки за счет применения электрода-инструмента, учитывающего режим упомянутой обработки и свойства применяемого электролита для обеспечения практически полного удаления газообразных продуктов реакции с рабочей поверхности. 3 ил. способ размерной электрохимической обработки, патент № 2489234

способ размерной электрохимической обработки, патент № 2489234 способ размерной электрохимической обработки, патент № 2489234 способ размерной электрохимической обработки, патент № 2489234

Формула изобретения

Способ размерной электрохимической обработки детали, включающий обработку детали электродом-инструментом, содержащим токопроводящий корпус с каналами, диэлектрическую прокладку и формообразующую часть с каналами для удаления газообразных продуктов реакции, отличающийся тем, что используют электрод-инструмент, каналы которого в формообразующей части расположены в шахматном порядке и выполнены перпендикулярно к рабочей поверхности формообразующей части, причем поперечный шаг между каналами равен поперечному размеру канала, а продольный шаг определяют в зависимости от режимов обработки и свойств электролита по формуле:

способ размерной электрохимической обработки, патент № 2489234

где a - продольное расстояние между каналами, м; способ размерной электрохимической обработки, патент № 2489234 Д - допустимое объемное газосодержание в каналах формообразующей части; А - постоянная обрабатываемости, 1/м, которая рассчитывается по формуле:

способ размерной электрохимической обработки, патент № 2489234

где Сспособ размерной электрохимической обработки, патент № 2489234 - объемный электрохимический эквивалент выделения водорода, м3/А·с; U - напряжение между обрабатываемой деталью и формообразующей частью, В; способ размерной электрохимической обработки, патент № 2489234 U - алгебраическая сумма падений напряжений в прианодной и прикатодной области обрабатываемой детали, В; способ размерной электрохимической обработки, патент № 2489234 0 - удельная электропроводность электролита на входе в зазор между обрабатываемой деталью и формообразующей частью, Ом-1·м-1; способ размерной электрохимической обработки, патент № 2489234 0 - скорость потока электролита на входе в зазор между обрабатываемой деталью и формообразующей частью, м/с; способ размерной электрохимической обработки, патент № 2489234 - зазор между обрабатываемой деталью и формообразующей частью электрода-инструмента, м.

Описание изобретения к патенту

Изобретение относится к электрофизическим и электрохимическим методам обработки и может быть использовано при электрохимической обработке длинномерных деталей.

Известны способы электрохимической обработки с подачей электролита по периферии обрабатываемой поверхности (Справочник по электрохимическим и электрофизическим методам обработки. Г.Л. Амитан, И.А. Байсупов, Ю.М. Барон и др.. Под общей ред. В.А. Волосатого. - Л.: Машиностроение, 1988. - С.20). При данной схеме обработки скорость анодного растворения со стороны входа электролита больше, чем со стороны выхода электролита, что объясняется уменьшением электропроводности электролита вдоль обрабатываемой поверхности из-за газообразования водорода на поверхности катода-инструмента. Для устранения этого недостатка необходима сложная и трудоемкая корректировка профиля катода-инструмента или отвод водорода.

Известен способ электрохимической размерной обработки, по которому через систему каналов в виде щелей в теле катода-инструмента отводят водород (Корчагин Г.Н., Макаров В.А. Повышение точности электрохимического формообразования длинномерных деталей. Электронная обработка металлов. - 1974. - № 3. С.21-23). Однако напротив щелей на обрабатываемой поверхности появляются макровыступы, что является недопустимым.

Наиболее близким является способ электрохимической обработки детали электродом-инструментом, содержащим токопроводящий корпус с каналами, диэлектрическую прокладку и формообразующую часть с отводом газообразных продуктов реакции (водорода) через каналы, выполненные в формообразующей части (а.с. № 973280, МПК В23Р 1/12).

К недостаткам способа относится невысокая точность обработки, связанная с неполным отводом газообразных продуктов реакции от рабочей поверхности электрода-инструмента, ввиду того, что расстояния между каналами для отвода газообразных продуктов выполнены произвольно и не связаны с режимами обработки. Кроме того, каналы в формообразующей части расположены под острым углом к рабочей поверхности, что представляет определенную технологическую сложность изготовления электрода-инструмента.

Задача изобретения - повышение точности обработки.

Решение задачи достигается тем, что в известном способе размерной электрохимической обработки, включающем обработку детали электродом-инструментом, содержащим токопроводящий корпус с каналами, диэлектрическую прокладку и формообразующую часть с каналами для удаления газообразных продуктов реакции, согласно техническому решению каналы в формообразующей части расположены в шахматном порядке перпендикулярно рабочей поверхности формообразующей части, причем поперечный шаг между каналами равен поперечному размеру канала, а продольный шаг определяют в зависимости от режимов обработки и свойств электролита по формуле

способ размерной электрохимической обработки, патент № 2489234 ,

где а - продольное расстояние между каналами, м; способ размерной электрохимической обработки, патент № 2489234 Д - допустимое объемное газосодержание в каналах формообразующей части; А - постоянная обрабатываемости, 1/м, рассчитываемая по формуле:

способ размерной электрохимической обработки, патент № 2489234 ,

где Сспособ размерной электрохимической обработки, патент № 2489234 - объемный электрохимический эквивалент выделения водорода, м3/А·с; U - напряжение между обрабатываемой деталью и формообразующей частью, В; способ размерной электрохимической обработки, патент № 2489234 U - алгебраическая сумма падений напряжений в прианодной и прикатодной областях обрабатываемой детали, В; способ размерной электрохимической обработки, патент № 2489234 0 - удельная электропроводность электролита на входе в зазор между обрабатываемой деталью и формообразующей частью, Ом-1·м-1; v0 - скорость потока электролита на входе в зазор между обрабатываемой деталью и формообразующей частью, м/с; способ размерной электрохимической обработки, патент № 2489234 - зазор между обрабатываемой деталью и формообразующей частью электрода-инструмента, м.

Изобретение иллюстрируется следующими графическими материалами.

На фиг.1 изображен продольный разрез электрода-инструмента;

на фиг.2 - вид снизу на электрод-инструмент;

на фиг.3 - зависимость точности обработки от длины обрабатываемой поверхности при различных значениях расстояния между каналами.

Электрод-инструмент (фиг.1), используемый при размерной электрохимической обработке, состоит из формообразующей части 1 с каналами 2, расположенными в шахматном порядке и выполненными перпендикулярно к рабочей поверхности 3. Каналы 2 имеют цилиндрическую форму, как наиболее простую в изготовлении, поперечный шаг между каналами равен поперечному размеру канала, в данном примере диаметру отверстия d. Продольный шаг определяют на этапе подготовки к процессу обработки в зависимости от режимов обработки и свойств электролита по формулам (1) и (2). Формообразующая часть 1 изготовлена из токопроводящего материала и установлена на диэлектрической прокладке 4 по торцу корпуса 5 присоединенного к отрицательному полюсу источника питания (на чертеже не показан).

В корпусе 5 выполнены каналы 6. Через каналы 2 и 6 происходит отвод газообразных продуктов реакции в сборник 7.

Поверхность 8 формообразующей части 1, обращенная к корпусу, покрыта защитной нерастворимой электропроводной пленкой PbO 2.

Способ размерной электрохимической обработки осуществляется следующим образом.

За счет созданного электрического поля между обрабатываемой деталью (подключен «+» источника питания) и корпусом 5 электрода-инструмента (подключен «-» источника питания) в формообразующей части 1 происходит разделение свободных зарядов. При этом рабочая поверхность 3 имеет отрицательный потенциал и поэтому геометрия обработанной поверхности определяется конфигурацией рабочей поверхности 3. Так как продольное расстояние между каналами «а» равно расчетному значению, определяемому в зависимости от режимов обработки и свойств электролита, то происходит практически полное удаление газообразных продуктов реакции с рабочей поверхности 3, что приводит к повышению точности обработки. При выполнении каналов 2 перпендикулярно рабочей поверхности 3 упрощается изготовление электрода-инструмента.

Пример конкретного выполнения

Необходимо обработать деталь из стали 12Х18Н10Т. Длина обрабатываемой поверхности 240 мм. Электролит - водный раствор NaCl концентрацией 150 г/л. Удельная электропроводность этого раствора способ размерной электрохимической обработки, патент № 2489234 0=8,86 Ом-1·м-1. Допустимое объемное газосодержание в каналах формообразующей части способ размерной электрохимической обработки, патент № 2489234 Д=0,12. Объемный электрохимический эквивалент выделения водорода при данных условиях обработки Сспособ размерной электрохимической обработки, патент № 2489234 =0,11·10-6 м3/А·с. Скорость потока электролита на входе в зазор между обрабатываемой деталью и формообразующей частью электрода-инструмента способ размерной электрохимической обработки, патент № 2489234 0=5 м/с. Зазор между обрабатываемой деталью (анодом) и формообразующей частью способ размерной электрохимической обработки, патент № 2489234 =0,5·10-3 м. Напряжение между обрабатываемой деталью и формообразующей частью U=12,3 B. Алгебраическая сумма падений напряжений в прианодной и прикатодной областях обрабатываемой детали способ размерной электрохимической обработки, патент № 2489234 U=2,3 B.

После подстановки данных в формулы (1) и (2) рассчитали значение расстояния между каналами a=0,02 м, поперечный шаг равен диаметру канала d(0,8·10-3 м). Изготовили каналы (отверстия) диаметром 0,8·10 -3 м, расположенные в шахматном порядке перпендикулярно рабочей поверхности формообразующей части. После проведения электрохимической обработки замерялся съем металла многооборотной индикаторной головкой.

Результаты опытов представлены на графике (фиг.3), по осям которого отложены значения соотношения способ размерной электрохимической обработки, патент № 2489234 , где h - локальный съем металла, h0 - съем металла на входе в зазор между обрабатываемой деталью и формообразующей частью электрода-инструмента и длина обрабатываемой поверхности - L.

Кривая 1 представляет электрохимическую обработку при помощи электрода-инструмента с поперечным шагом между каналами а=0,02 м (расчетное значение);

кривая 2 - обработку при помощи электрода-инструмента с а=0,03 м;

кривая 3 - обработку при помощи электрода-инструмента с a=0,01 м.

Из графиков видно, что при расчетном значении а съем металла практически одинаков по всей длине обрабатываемой детали (кривая 1). Снижение точности обработки происходит как при увеличении расстояния между каналами более расчетного (кривая 2), так и при уменьшении этой величины менее расчетного значения (кривая 3).

В первом случае снижение точности объясняется увеличением газосодержания в потоке электролита, что приводит к снижению плотности тока, а значит к уменьшению съема металла. Во втором случае ухудшение точности объясняется уменьшением скорости потока электролита, т.к. его часть отводится через каналы в электроде-инструменте.

Класс B23H3/04 электроды, специально предназначенные для этого или их изготовление

способ изготовления электрода-инструмента при объемной электрохимической обработке (эхо) -  патент 2481928 (20.05.2013)
электрод-инструмент для электрохимической прошивки полости в металлической детали -  патент 2464136 (20.10.2012)
катод для электрохимической обработки -  патент 2456139 (20.07.2012)
электрохимический маркер -  патент 2430815 (10.10.2011)
стержневой электрод-инструмент -  патент 2385206 (27.03.2010)
инструмент-электрод для электрохимического полирования пространственно-сложных поверхностей -  патент 2338013 (10.11.2008)
электрод-инструмент -  патент 2265503 (10.12.2005)
электрод-инструмент для электрохимической обработки червяков -  патент 2264280 (20.11.2005)
комбинированный электрод для электрохимической восстановительной обработки поврежденного коррозией железобетона и способ управления таким электродом -  патент 2249496 (10.04.2005)
устройство для электрохимической обработки -  патент 2243069 (27.12.2004)
Наверх