способ получения планарного волновода оксида цинка в ниобате лития

Классы МПК:C01G9/02 оксиды; гидроксиды
G02B6/10 типа оптического волновода
B81C1/00 Изготовление или обработка устройств или систем, выполненных внутри общей подложки или на ней
C01D15/00 Соединения лития
C01G33/00 Соединения ниобия
Автор(ы):, , , , , ,
Патентообладатель(и):Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский государственный университет" (RU)
Приоритеты:
подача заявки:
2012-05-03
публикация патента:

Изобретение может быть использовано области интегральной и нелинейной оптики. Способ создания планарного волновода оксида цинка на ниобате лития включает приготовление пленкообразующего раствора с последующим выдерживанием его в течение 1 суток при комнатной температуре, нанесение раствора на полированный ниобат лития, сушку, отжиг, постепенное охлаждение в условиях естественного остывания муфельной печи. Ниобат лития предварительно очищают 96% раствором этилового спирта. Сушку ниобата лития с нанесенным пленкообразующим раствором осуществляют при температуре 60°С в течение 1 часа, с последующим отжигом при 400°С в атмосфере воздуха со скоростью нагрева 14°С/мин 1 час и при температуре 870-1050°С со скоростью нагрева 35°С/мин от 2 до 5 часов, при следующем соотношении компонентов пленкообразующего раствора, мас.%: кристаллогидрат нитрата цинка - от 5,2 до 9,9%; салициловая кислота - от 4,6 до 4,8%; 96% раствор этилового спирта - остальное. Изобретение позволяет снизить трудоемкость и энергоемкость процесса получения стойкого к излучению в зеленой области спектра планарного волновода со значениями максимального приращения показателя преломления 0,003-0,005. 1 ил., 2 табл., 3 пр.

способ получения планарного волновода оксида цинка в ниобате   лития, патент № 2487084

Формула изобретения

Способ создания планарного волновода оксида цинка на ниобате лития, включающий в себя приготовление пленкообразующего раствора с последующим выдерживанием его в течение 1 суток при комнатной температуре, нанесение его на полированный ниобат лития, сушку, отжиг, постепенное охлаждение в условиях естественного остывания муфельной печи, отличающийся тем, что ниобат лития предварительно очищают 96%-ным раствором этилового спирта, сушку ниобата лития с нанесенным пленкообразующим раствором осуществляют при температуре 60°С в течение 1 ч, с последующим отжигом при 400°С в атмосфере воздуха со скоростью нагрева 14°/мин 1 ч и при температуре 870-1050°С со скоростью нагрева 35°/мин от 2 до 5 ч при следующем соотношении компонентов пленкообразующего раствора, мас.%:

кристаллогидрат нитрата цинка от 5,2 до 9,9%
салициловая кислота от 4,6 до 4,8%
96%-ный раствор этилового спирта остальное

Описание изобретения к патенту

Изобретение относится к способу получения оптических планарных волноводов в ниобате лития для интегральной и нелинейной оптики. Повышение стойкости к оптическому излучению достигается за счет диффузии оксида цинка в ниобат лития. Полученные волноводные структуры используются для создания периодических доменных структур, позволяющих существенно расширить диапазон трансформации ими спектра лазерного излучения, и используются в режиме квазисинхронизма как для эффективной генерации второй оптической гармоники, так и для параметрического преобразования частоты в различные спектральные диапазоны.

Известен способ получения оптических титандиффузионных волноводов на основе монокристалла ниобата лития (Suchosky Paul G. IEEE J. Quantum Electron, 1987, Vol. 23, № 10, p.1673-1679). Диффузию титана проводят путем осаждения на поверхность ниобата лития металлической полоски титана толщиной 800 Å и температурной обработкой при температуре 1025°С в течение 6 часов. Недостатком данного способа является создание наряду с оптическим планарным волноводом для необыкновенной волны оптического канального титандиффузионного волновода.

Известен способ создания оптических канальных волноводов, включающий в себя термодиффузию пленки титана в подложку, из монокристалла ниобата лития (заявка РФ № 94037128, дата опубл. 27.07.1996, G02B 6/12).

В данном способе полированные подложки из монокристалла ниобата лития подвергают предварительному температурному воздействию не менее 20 ч при температуре 900-1100°С.

Недостатком известного способа является возможность получения только канального волновода, а также длительная предварительная термическая обработка монокристалла ниобата лития.

Недостатком данного способа является то, что в процессе высокотемпературного отжига необходимо подавлять диффузию оксида лития с поверхности ниобата лития путем помещения на поверхность титанового покрытия высокотемпературной керамики.

Наиболее близким по технической сущности к заявляемому способу получения волновода является способ получения планарных, оптических волноводов Zn:LiNbO 3 для интегральной и нелинейной оптики (Анисимов Д.О., Бородин М.В., Печенкин А.Ю., Смычков С.А., Халикулова С.Ф., Щербинина В.В. Планарные оптические волноводы Zn:LiNbO3 для интегральной и линейной оптики // Доклады ТУСУРа, № 2 («»), часть 2, 2010, С.58-61).

Пленки оксида цинка толщиной 89 нм получают путем высокотемпературного отжига покрытия из пленкообразующих растворов нитрата цинка с салициловой кислотой на ниобате лития. К недостаткам данного способа относится первичная высокотемпературная деструкция (870-1050°С) нанесенного на поверхность ниобата лития пленкообразующего раствора нитрата цинка с салициловой кислотой. Такая обработка приводит к образованию более дефектной структуры оксида цинка и, как следствие, к снижению максимального приращения показателя преломления и количества волноводных ТЕ-мод, а также стойкости к оптическому излучению волноводов Zn:LiNbO3.

Задачей настоящего изобретения является разработка стойкого к излучению в зеленой области спектра планарного волновода Zn:LiNbO3 со значениями максимального приращения показателя преломления 0,003-0,005 в ниобате лития диффузией из пленок оксида цинка для использования в устройствах нелинейной оптики. Способ создания планарного волновода оксида цинка на ниобате лития, включающий в себя приготовление пленкообразующего раствора с последующим выдерживанием его в течение 1 суток при комнатной температуре, нанесение его на полированный ниобат лития, сушку, отжиг, постепенное охлаждение в условиях естественного остывания муфельной печи, но в отличие от прототипа ниобат лития предварительно очищали 96%-ным раствором этилового спирта, сушку ниобата лития с нанесенным пленкообразующим раствором осуществляли при температуре 60°С в течение 1 часа, с последующим отжигом при 400°С в атмосфере воздуха со скоростью нагрева 14°С/мин 1 час и при температуре 870-1050°С со скоростью нагрева 35°С/мин от 2 до 5 часов, при следующем соотношении компонентов пленкообразующего раствора, мас.%:

кристаллогидрат нитрата цинка - от 5,2 до 9,9%;

салициловая кислота - от 4,6 до 4,8%;

96%-ный раствор этилового спирта - остальное.

Конечный продукт представляет собой прозрачный материал с периодами периодически доменной структурой 6,7-6,9 мкм и числом ТЕ-мод при длинах волн 526,5; 632,8; 1053 нм 2-5. Свойства полученных образцов Zn:LiNbO3 приведены в таблице 1.

Пример 1. Пленкообразующий раствор готовят путем растворения 0,4461 г кристаллогидрата нитрата цинка и 0,4144 г салициловой кислоты в 10 мл 96%-ного раствора этилового спирта. Раствор выдерживают сутки и наносят на поверхность обработанного спиртом ниобата лития. Скорость вытягивания пленки из пленкообразующего раствора составляет 100 мм/мин. Полученную пленку раствора на ниобате лития сушат 1 час при температуре 60°С и отжигают в муфельной печи 1 час при температуре 400°С в атмосфере воздуха со скоростью нагрева 14°С/мин. В данных условиях получают на ниобате лития оксид цинка, после чего образец отжигают 3 часа при температуре 880°С со скоростью нагрева 35°С/мин. В данных условиях получается волновод с максимальным приращением показателя преломления 0,003, характеризующийся тремя ТЕ-модами при длинах волн 526,5 и 632,8 нм.

Пример 2. Пленкообразующий раствор готовят путем растворения 0,4461 г кристаллогидрата нитрата цинка и 0,4144 г салициловой кислоты в 10 мл 96%-ного раствора этилового спирта. Раствор выдерживают сутки и наносят на поверхность обработанного спиртом ниобата лития. Скорость вытягивания пленки из пленкообразующего раствора составляет 100 мм/мин. Полученную пленку раствора на ниобате лития сушат 1 час при температуре 60°С и отжигают в муфельной печи 1 час при температуре 400°С в атмосфере воздуха со скоростью нагрева 14°С/мин. В данных условиях получают на ниобате лития оксид цинка, после чего образец отжигают 3 часа при температуре 900°С со скоростью нагрева муфельной печи 35°С/мин. В данных условиях получается волновод с максимальным приращением показателя преломления 0,005, характеризующийся двумя ТЕ-модами при длинах волн 526,5 и 632,8 нм.

Пример 3. Пленкообразующий раствор готовят путем растворения 0,8922 г кристаллогидрата нитрата цинка и 0,4144 г салициловой кислоты в 10 мл 96%-ного раствора этилового спирта. Раствор выдерживают сутки и наносят на поверхность обработанного спиртом ниобата лития. Скорость вытягивания пленки из пленкообразующего раствора составляет 100 мм/мин. Полученную пленку раствора на ниобате лития сушат 1 час при температуре 60°С и отжигают в муфельной печи 1 час при температуре 400°С в атмосфере воздуха со скоростью нагрева муфельной печи 14°С/мин. В данных условиях получают на ниобате лития оксид цинка, после чего образец отжигают 2 часа при температуре 870°С со скоростью нагрева муфельной печи 35°С/мин. В данных условиях получается волновод с максимальным приращением показателя преломления 0,004, характеризующийся двумя ТЕ-модами при длине волны 526,5 и тремя ТЕ-модами при длине волны 632,8 нм.

В таблице 1 приведены условия диффузии и характеристики образцов полученных волноводов. Количество ТЕ-мод зависит от термической обработки образцов.

На рисунке 1 представлена термограмма разложения высушенного пленкообразующего раствора, указывающая на обоснованность выбора температурного режима отжига пленок на ниобате лития при температуре 400°С. Из термограммы видно, что при температуре 380°С начинает окисляться салицилат ион (экзотермический эффект горения органических остатков) и при 550°С заканчивает формироваться оксид цинка. Результаты количественного термического анализа представлены в таблице 2. Из таблицы видно, что конечным продуктом отжига пленкообразующего раствора является оксид цинка.

Преимуществом заявленного изобретения является возможность получения волноводов Zn:LiNbO3 из пленкообразующих растворов на основе солей цинка(II). Способ позволяет снизить трудоемкость и энергоемкость процесса получения пленок оксида цинка на ниобате лития и получать стойкий к излучению в зеленой области спектра планарный волновод Zn:LiNbO3 со значениями максимального приращения показателя преломления 0,003-0,005.

Таблица 1
Условия диффузии цинка в ниобате лития и свойства полученных образцов волноводов
Диффузия Срез Число ТЕ мод
526,5 нм632,8 нм 1053 нм
2 раза по часу, 870°С Y 23 1
2 раза по часу, 870°С Y2 31
2 часа, 930°С Y 22 1
3 раза по часу, 880°С Х3 31
2 раза по 2 часа и 1 час, 870°С Х3 32
3 раза по часу Х2 21

Таблица 2
Количественные характеристики термического анализа высушенного ПОР состава Zn(C6H4(OH)COO)OH HNO3 адс.
температурные интервалы, °С убыль массы теор., % убыль массы прак., % удаляющееся вещество промежуточный/конечный продукт
25-19011,15 10,29 HNO3(адс.) Zn(C6H4(OH)COO)OH
191-55024,43 25,19 C6H4(ОН)COOH ZnO

Скачать патент РФ Официальная публикация
патента РФ № 2487084

patent-2487084.pdf

Класс C01G9/02 оксиды; гидроксиды

способ получения фотонно-кристаллических структур на основе металлооксидных материалов -  патент 2482063 (20.05.2013)
способ получения обедненного по изотопу zn64 оксида цинка, очищенного от примесей олова и кремния -  патент 2464229 (20.10.2012)
способ получения оксида цинка -  патент 2456240 (20.07.2012)
способ получения порошка оксида цинка -  патент 2450972 (20.05.2012)
способ получения оксида цинка -  патент 2420458 (10.06.2011)
состав для получения тонкой пленки на основе системы двойных оксидов циркония и цинка -  патент 2411187 (10.02.2011)
способ получения обедненного по изотопу zn64 оксида цинка, очищенного от примеси олова и углерода -  патент 2411186 (10.02.2011)
оксид цинка, содержащий галлий -  патент 2404124 (20.11.2010)
способ получения наноразмерных частиц оксидов металла в восходящих плазменных потоках -  патент 2404120 (20.11.2010)
композиция для включения в полимерные материалы и способ ее получения -  патент 2370444 (20.10.2009)

Класс G02B6/10 типа оптического волновода

Класс B81C1/00 Изготовление или обработка устройств или систем, выполненных внутри общей подложки или на ней

способ изготовления микроэлектромеханических структур и устройство для его осуществления -  патент 2511282 (10.04.2014)
способ изготовления микроэлектромеханических реле -  патент 2511272 (10.04.2014)
способ изготовления микроэлектромеханического ключа для защиты информационно-телекоммуникационной аппаратуры космических аппаратов при электромагнитном старте -  патент 2509051 (10.03.2014)
система шестерен для часов -  патент 2498383 (10.11.2013)
способ изготовления наноэлектромеханического преобразователя и наноэлектромеханический преобразователь с автоэлектронной эмиссией -  патент 2484483 (10.06.2013)
форма и способ ее изготовления -  патент 2482221 (20.05.2013)
пресс-форма и способ ее изготовления -  патент 2481949 (20.05.2013)
способ получения газопоглощающей структуры -  патент 2474912 (10.02.2013)
составной микромеханический компонент из кремния с металлом и способ изготовления компонента -  патент 2474532 (10.02.2013)
тепловой микромеханический актюатор и способ его изготовления -  патент 2448896 (27.04.2012)

Класс C01D15/00 Соединения лития

Класс C01G33/00 Соединения ниобия

способ получения шихты ниобата лития для выращивания монокристаллов -  патент 2502672 (27.12.2013)
способ получения покрытых аморфным углеродом наночастиц и способ получения карбида переходного металла в форме нанокристаллитов -  патент 2485052 (20.06.2013)
способ получения пентафторида ниобия и/или тантала -  патент 2482064 (20.05.2013)
способ получения интеркаляционных соединений на основе слоистых дихалькогенидов металлов и катионов тетраалкиламмония -  патент 2441844 (10.02.2012)
субоксиды ниобия -  патент 2424982 (27.07.2011)
способ производства карбида переходного металла и/или сложного карбида переходного металла -  патент 2417949 (10.05.2011)
способ получения чистого пентахлорида ниобия и устройство для его осуществления -  патент 2381179 (10.02.2010)
порошок оксида вентильного металла и способ его получения -  патент 2378199 (10.01.2010)
порошок недоокиси ниобия, анод из недоокиси ниобия и конденсатор с твердым электролитом -  патент 2369563 (10.10.2009)
недоокись ниобия, способ ее получения и конденсатор, содержащий недоокись ниобия в качестве анода -  патент 2363660 (10.08.2009)
Наверх