способ электролитического осаждения сплава железо-алюминий

Классы МПК:C25D3/56 сплавов
Автор(ы):, , , ,
Патентообладатель(и):Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Курская государственная сельскохозяйственная академия имени профессора И.И. Иванова Министерства сельского хозяйства Российской Федерации (RU)
Приоритеты:
подача заявки:
2012-01-10
публикация патента:

Изобретение относится к области электролитического осаждения твердых, износостойких покрытий, в частности железоалюминиевых покрытий, применяемых для восстановления и упрочнения поверхностей деталей. Способ включает осаждение из электролита, содержащего кг/м3: хлористый алюминий 50-600, железо хлористое (II) 100-400, железо сернокислое (II) 100-400, хлористый калий (натрий) 80-100, соляную кислоту 0,5-1,5, на переменном асимметричном токе с коэффициентом асимметрии 1,2-6, катодной плотностью тока 20-80 А/дм2, температурой электролита 20-40°С, рН электролита 0,8. Технический результат: повышение содержания легирующего компонента - алюминия, повышение производительности, микротвердости и износостойкости.

Формула изобретения

Способ электролитического осаждения сплава железо-алюминий из электролита, содержащего хлористый алюминий, железо хлористое (II), железо сернокислое (II), хлористый калий (натрий), соляную кислоту, отличающийся тем, что осаждение ведут из электролита, содержащего, кг/м3:

хлористый алюминий 50-600
железо хлористое (II)100-400
железо сернокислое (II)100-400
хлористый калий (натрий)80-100
соляная кислота 0,5-1,5,


на переменном асимметричном токе с коэффициентом асимметрии 1,2-6, катодной плотностью тока 20-80 А/дм2, температурой электролита 20-40°С и кислотностью электролита рН 0,8.

Описание изобретения к патенту

Изобретение относится к области электролитического осаждения твердых, износостойких покрытий, в частности железоалюминиевых покрытий, применяемых для восстановления и упрочнения поверхностей деталей.

Известен способ электролитического осаждения сплава железо-алюминий из электролита, содержащего: хлористый алюминий, железо хлористое, хлористый калий (натрий), соляную кислоту, глицерин. Процесс ведут на постоянном токе при температуре 20-100°С и катодной плотности тока 5-100 А/дм2 (а.с. № 377432, МПК C23b 5/32. Способ электролитического осаждения сплава железо-алюминий). Недостатком данного способа является ограниченная микротвердость покрытия, низкая прочность сцепления покрытия с основой, низкая скорость осаждения покрытия и использование высоких температур электролита, низкая износостойкость.

За прототип взят известный способ электролитического осаждения сплава железо-алюминий из электролита, содержащего: хлористый алюминий, железо хлористое, хлористый калий (натрий), соляную кислоту. Процесс ведут на переменном асимметричном токе с интервалом катодных плотностей тока 30-70 А/дм2 и коэффициентом асимметрии способ электролитического осаждения сплава железо-алюминий, патент № 2486294 =1,2-6. (Патент № 2263727, МПК C25D 3/56. Способ электролитического осаждения сплава железо-алюминий).

Недостатком данного способа является низкая износостойкость и низкое содержание легирующего компонента - алюминия.

Технической задачей изобретения является повышение износостойкости покрытия и содержания легирующего компонента - алюминия.

Предлагается способ электролитического осаждения сплава железо-алюминий, который имеет в своем составе до 2% алюминия. Получаемые покрытия обладают высокой прочностью сцепления с основой, высокой микротвердостью и износостойкостью. Осаждение происходит из электролита, содержащего хлористый алюминий, железо хлористое (II), железо сернокислое (II), хлористый калий (натрий), соляную кислоту при следующем соотношении компонентов, кг/м3:

хлористый алюминий 50-600
железо хлористое (II)100-400
железо сернокислое (II)100-400
хлористый калий (натрий)80-100
соляная кислота 0,5-1,5

Электроосаждение ведется при температуре 20-40°С на переменном асимметричном токе с интервалом катодных плотностей тока 20-80 А/дм2 и коэффициентом асимметрии способ электролитического осаждения сплава железо-алюминий, патент № 2486294 =1,2-6. Кислотность электролита находится в пределах рН 0,8.

Электролит получают соединением водного раствора хлористого железа, сернокислого железа, хлористого алюминия и хлористого калия (натрия).

Хлористый алюминий находится в пределах 50-600 кг/м3. Нижний предел обусловлен тем, что при содержании менее 50 кг/м3 хлористого алюминия не происходит заметного изменения физико-механических свойств покрытия. Верхний предел ограничивается содержанием хлористого алюминия 600 кг/м3. При содержании больше 600 кг/м 3 происходит интенсивное образование окислов алюминия, что резко снижает физико-механические свойства электролитического покрытия.

Концентрация хлористого железа находится в пределах 100-400 кг/м3. Нижний предел показывает зону минимальной вязкости. Верхний предел показывает зону максимальной электропроводности. Концентрация сернокислого железа находится в пределах 100-400 кг/м3. Нижний предел показывает зону минимальной вязкости. Верхний предел показывает зону максимальной смачиваемости поверхности электроосаждения и максимальной растворимости сернокислого железа.

Содержание соляной кислоты находится в пределах 0,5-1,5 кг/м3. Верхний предел установлен из экономических соображений, электроосаждение железа на катоде происходит с одновременным разрядом водорода. С повышением содержания соляной кислоты резко увеличивается количество разряжающегося водорода и падает выход по току. Нижний предел выбран по качественным характеристикам структур электролитического железа. При содержании соляной кислоты меньше 0,5 кг/м3 происходит сильное защелачивание прикатодного слоя. Гидроокись, образующаяся в прикатодном слое, включается в покрытие и этим ухудшает их структуру.

Хлористый калий (натрий) находится в пределах 80-100 кг/м3. Нижний предел обусловлен тем, что при содержании менее 80 кг/м3 хлористого калия (натрия), не происходит заметного повышения электропроводности электролита и как следствие повышения катодной плотности тока. Верхний предел ограничивается содержанием хлористого калия (натрия) 100 кг/м3. При содержании больше 100 кг/м3 происходит интенсивное образование окислов калия (натрия), что резко снижает физико-механические свойства электролитического покрытия.

Температурный интервал находится в пределах 20-40°С. Нижний предел ограничен диффузионными свойствами электролита. Движение ионов замедленное и скорость осаждения покрытия низкая. Выше 40°С использование электролита невыгодно с экономической точки зрения. Качественного изменения покрытия не происходит, однако увеличиваются затраты на подогрев электролита.

Катодная плотность тока находится в пределах 20-80 А/дм2. Ниже 20 А/дм 2 плотность тока использовать не целесообразно, т.к. процесс электролиза имеет низкую скорость осаждения покрытия. При катодной плотности тока выше 80 А/дм2 происходит сильное дендритообразование и резко снижается выход по току.

Начало осаждения покрытия проходит при коэффициенте асимметрии способ электролитического осаждения сплава железо-алюминий, патент № 2486294 =1,2, который обеспечивает высокую сцепляемость покрытия с основой, Gсц=350 МПа. Если коэффициент асимметрии ниже 1,2, осаждение не происходит. В процессе электроосаждения коэффициент асимметрии постепенно повышают до способ электролитического осаждения сплава железо-алюминий, патент № 2486294 =6, который характеризуется высокой и стабильной скоростью осаждения покрытия. Дальнейшее повышение коэффициента асимметрии не рекомендуется, т.к. с дальнейшим снижением анодной составляющей процесс переходит на режим, близкий к постоянному току, и качество покрытий ухудшается. Благодаря разным значениям коэффициента асимметрии можно получать покрытия с различными физико-механическими свойствами.

На основе проведенных испытаний оптимальными условиями способа электроосаждения сплава железо-алюминий являются условия, приведенные в примере:

Электролит состоит из следующих компонентов в количестве, кг/м3:

хлористый алюминий 350
железо хлористое (II)300
железо сернокислое (II)300
хлористый калий (натрий) 90
соляная кислота1,0

Процесс электролитического осаждения покрытия ведут при температуре 40°С и катодной плотности тока 50 А/дм2. Процесс осаждения начинают с способ электролитического осаждения сплава железо-алюминий, патент № 2486294 =1,2 и постепенно в течение 3-5 минут повышают до способ электролитического осаждения сплава железо-алюминий, патент № 2486294 =6. Покрытие имеет Gcц=350 МПа, микротвердость Нµ=9000 МПа, скорость осаждения 0,45 мм/ч, содержание алюминия в покрытии 1,8%.

Предлагаемый способ имеет высокую производительность за счет применения переменного асимметричного тока. Он экономически эффективен, т.к. осаждение покрытия происходит при высокой катодной плотности тока и имеет высокую скорость осаждения покрытия. Покрытия, полученные предлагаемым способом, обладают высокой микротвердостью и износостойкостью, что позволяет их использовать в народном хозяйстве для восстановления и упрочнения поверхностей деталей машин.

Класс C25D3/56 сплавов

щелочной электролит для электроосаждения цинк-никелевых покрытий -  патент 2511727 (10.04.2014)
состав электролита антифрикционного электролитического сплава "цинк-железо" для осаждения в условиях гидромеханического активирования -  патент 2489527 (10.08.2013)
система и способ нанесения покрытий из металлических сплавов посредством применения гальванической технологии -  патент 2473718 (27.01.2013)
электролит для осаждения сплава цинк-галлий -  патент 2459016 (20.08.2012)
способ нанесения электролитических покрытий на основе хрома -  патент 2457288 (27.07.2012)
электролит для осаждения сплава никель-висмут -  патент 2457287 (27.07.2012)
способ получения оксидного покрытия на стали -  патент 2449062 (27.04.2012)
способ получения покрытия из оксидов металлов на стали -  патент 2449061 (27.04.2012)
электролит для электроосаждения сплава цинк-никель -  патент 2441107 (27.01.2012)
электролит для получения никель-железных покрытий -  патент 2424380 (20.07.2011)
Наверх