способ получения керамического изделия

Классы МПК:C04B35/185 муллит
C04B35/624 золь-гельная обработка
Автор(ы):, , , ,
Патентообладатель(и):Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) (RU)
Приоритеты:
подача заявки:
2011-06-22
публикация патента:

Изобретение относится к способам получения керамических материалов, предназначенных для высокотемпературных изделий конструкционного назначения, таких как элементы камеры сгорания и соплового аппарата газотурбинного двигателя. Способ получения керамического изделия на основе муллита, содержащего 5-20 мас.% оксида циркония, включает приготовление керамического порошка соосаждением растворов гидролизованного тетраэтоксисилана, хлорида алюминия и золя оксида циркония с последующей термообработкой и измельчением, формование и спекание. Спекание проводят при температуре 1670-1750°C со скоростью нагрева от 412,4 до 432,5°C в час, а выдержку при температуре обжига производят до завершения процесса усадки. Технический результат изобретения - получение керамического материала, обладающего пониженной плотностью, теплопроводностью, и повышенной термостойкостью, что позволит повысить термическую эффективность и ресурс камер сгорания газотурбинных двигателей. 4 пр., 1 табл.

Формула изобретения

Способ получения керамического изделия, включающий приготовление керамического порошка на основе муллита, содержащего 5-20 мас.% оксида циркония, путем соосаждения растворов гидролизованного тетраэтоксисилана, хлорида алюминия и золя оксида циркония с последующей термообработкой и измельчением полученной заготовки, формование керамического порошка, сушку и обжиг керамического изделия, отличающийся тем, что обжиг проводят при температуре 1670-1750°C со скоростью нагрева от 412,5 до 432,5°C/ч, а выдержку при температуре обжига проводят до завершения процесса усадки.

Описание изобретения к патенту

Изобретение относится к способам получения высокотемпературных керамических изделий конструкционного назначения, таких как элементы камеры сгорания и соплового аппарата газотурбинного двигателя (ГТД).

Известен способ получения устойчивого к перепаду температур керамического материала на основе муллита, включающий смешивание порошка керамического материала, являющегося прекурсором матричного материала, с соединениями, способными образовывать в процессе реакции с керамическим порошком оксид циркония, оксид гафния или их смесь, спекание полученной смеси при температуре ниже температуры реакции и термообработку спеченного изделия при температуре реакции, в результате чего прекурсор керамического материала превращается в матричный материал, в котором образуются частицы оксида циркония (Патент США № 4421861).

Недостатком данного способа является необходимость высокотемпературного реакционного спекания, при котором происходит неуправляемый рост кристаллов, приводящий к снижению механических свойств материала.

Известен способ получения керамического материала на основе муллита, содержащего оксиды, фториды, хлориды редкоземельных или щелочноземельных металлов и одно из соединений ванадия, ниобия или тантала в качестве спекающей добавки, включающий приготовление порошковой смеси исходных порошковых компонентов, ее механическое диспергирование путем помола в жидком носителе, формование заготовки и ее спекание при температуре 1300-1850°С (Патент США № 5294576).

Недостатком данного способа является использование спекающих добавок, частично удаляемых в процессе спекания. При высокотемпературном спекании массивных заготовок летучие компоненты исходной смеси имеют ограниченные возможности диффузии из центральных частей материала, поэтому внутри заготовки возможно образование зон с высоким остаточным содержанием добавки, что приводит к существенной неоднородности свойств получаемого материала по толщине и вызывает резкое снижение его механических свойств при высоких температурах. Известным способом невозможно изготовить высокотемпературные изделия конструкционного назначения.

Известен способ получения керамического изделия, включающий приготовление керамического порошка в виде преимущественно аморфной фазы (65-90 мас.%), содержащего 75-85 мас.% Al2О 3, остальное - SiO2, его формование и спекание при температуре 1500-1650°С. Исходный порошок получают парофазным окислением смеси хлоридов алюминия и кремния при температуре 1800-2100°C с последующим охлаждением порошкового материала со скоростью более 5×103°С/сек (Патент США № 4960738).

Недостатком данного способа является то, что полученное керамическое изделие в результате спекания имеет плотную беспористую структуру, повышенный удельный вес и теплопроводность и пониженную термостойкость (стойкость к распространению трещин при термоциклировании).

Наиболее близким аналогом, принятым за прототип, является способ получения керамического изделия, включающий приготовление керамического порошка на основе муллита, содержащего 1-2 5 мас.% оксида циркония, путем смешения гидролизованного тетраэтоксисилана с хлоридом алюминия и золем оксида циркония, их гелирование и сушку с последующей термообработкой и измельчением полученной заготовки, формование керамического порошка, сушку и обжиг изделия при температуре 1700°С в течение 1 часа (Патент РФ № 2292320).

Недостатком данного способа является то, что он не регламентирует скорость нагрева при обжиге и не обеспечивает получение закрытой пористости в изделии, способствующей снижению его теплопроводности и удельного веса и повышению стойкости к распространению трещин при термоциклировании.

Технической задачей изобретения является разработка способа получения керамического изделия с закрытой пористостью и соответственно с пониженной плотностью, теплопроводностью и повышенной термостойкостью.

Для решения поставленной задачи предложен способ получения керамического изделия, включающий приготовление керамического порошка на основе муллита, содержащего 5-20 мас% оксида циркония, путем соосаждения растворов гидролизованного тетраэтоксисилана, хлорида алюминия и золя оксида циркония с последующей термообработкой и измельчением полученной заготовки, формование керамического порошка, сушку и обжиг керамического изделия, отличающийся тем, что обжиг проводят при температуре 1670-1750°C со скоростью нагрева от 412,5 до 432,5°C/час, а выдержку при температуре обжига производят до завершения процесса усадки.

Предложенный режим спекания при температуре 1670-1750°C при скорости нагрева 412,5-432,5°C/час и выдержке при этой температуре до завершения процесса усадки обеспечивает получение закрытой, округлой, равномерно распределенной мелкой пористости в изделии из керамического композиционного материала, при этом на поверхности изделия образуется плотная гладкая корка, лишенная открытой пористости. Благодаря быстрому нагреву изделия при обжиге в поверхностных слоях материала происходит усадка и уплотнение с образованием плотного поверхностного слоя, препятствующего выходу паров, и при дальнейшей термообработке также происходит усадка во внутренних слоях изделия с образованием закрытых пор. Закрытые поры служат блокираторами возникающих в процессе эксплуатации трещин. В результате изделие имеет пониженную плотность и теплопроводность, повышенную термостойкость и защищено от проникновения в материал изделия влаги и горючих жидкостей, т.е. обеспечено получение высокотемпературного изделия конструкционного назначения, например теплозащитных элементов обшивки камер сгорания и сопловых аппаратов ГТД. Наличие закрытых пор также позволяет уменьшить коробление полученного материала при спекании и, соответственно, получить изделие заданной геометрической формы.

Примеры осуществления

Керамический порошок приготавливали в соответствии со способом, описанным в прототипе. Растворы, содержащие тетраэтоксисилан и хлорид алюминия, смешивали до образования прозрачной смеси и добавляли водную суспензию порошка оксида циркония с размером частиц 100-200 нм. После тщательного перемешивания проводили гелирование полученной смеси при комнатной температуре путем добавления ее в избыток аммиака при непрерывном перемешивании. Полученный осадок отфильтровывали, сушили и термообрабатывали при температуре 1050°C и измельчали до получения частиц размером не более 1 мкм. Полученный керамический порошок использовали для получения керамического изделия.

Пример 1

Из 100 г керамического порошка состава 80 мас.% микрокристаллического муллита (3Al2O3·2SiO2) и 20 мас.% оксида циркония (ZrO2) в стальной разъемной форме получали прессованием диски диаметром 105 мм и толщиной 5 мм. Диски сушили при температуре 120°C в течение 1 часа и спекали по режиму: нагрев до 1750°С в течение 4 часов, выдержка при этой температуре до завершения процесса усадки.

Теплопроводность измеряли при 20°С. Термостойкость определяли, испытывая образец на термоциклирование от 1200 до 20°С до появления первых трещин, плотность и пористость определяли гидростатическим взвешиванием. Результаты испытаний приведены в таблице.

Пример 2, 3, 4 проводили аналогично примеру 1, см.таблицу.

Пример 5 (по прототипу)

Брали керамический порошок, содержащий 80 мас.% муллита и 20 мас.% оксида циркония. Формовали заготовку методом водного шликерного литья, сушили ее и проводили обжиг по режиму: нагрев до 1700°C со скоростью 100°C/час, выдержка 1 час.

Результаты испытаний приведены в таблице.

Из таблицы видно, что керамическое изделие, полученное предлагаемым способом, имеет плотность на 7,5-16,3% и теплопроводность на 7,6-34% ниже, чем у прототипа. Предлагаемое изделие способно выдержать без разрушения на (40-90)% больше количество термоциклов. Материал имеет закрытую пористость, препятствующую распространению трещин, и при этом не имеет открытой пористости, то есть защищен от проникновения влаги и горючих жидкостей в объем материала изделия.

Использование изделий, полученных предлагаемым способом, позволит повысить термическую эффективность и ресурс камер сгорания газотурбинных двигателей.

Таблица
Пример Состав материала, мас.% Температура обжига, °С Скорость нагрева при обжиге, °С/час Плотность, г/см3 Теплопроводность, Вт(м·K) Количество термоциклов 1200-20°С Пористость, %
открытая закрытая
муллитZrO2
1 80 201750 432,53,05 4,3050 110,5
2 8020 1670412,5 3,04,85 520,5 11
3 95 51720 4252,82 3,90>60 0,5 13
4 90 101670 412,53,0 4,2555 0,511
5 прототип 8020 1700100 3,285,25 301,5 3

Класс C04B35/185 муллит

способ получения муллита -  патент 2463275 (10.10.2012)
огнеупор -  патент 2448927 (27.04.2012)
шихта для изготовления огнеупорных изделий -  патент 2412133 (20.02.2011)
способ увеличения прочности пористых керамических изделий и изделия, изготовленные этим способом -  патент 2401821 (20.10.2010)
способ получения высокотемпературного волокна на основе оксида алюминия -  патент 2395475 (27.07.2010)
огнеупорный состав для производства муллитсодержащего кирпича и плит -  патент 2369579 (10.10.2009)
способ получения корундового и муллитокорундового огнеупорного теплоизоляционного материала -  патент 2366636 (10.09.2009)
способ получения муллита из топазового концентрата -  патент 2335481 (10.10.2008)
муллитокорундовый огнеупор -  патент 2321571 (10.04.2008)
способ получения муллитовых изделий из топазового концентрата -  патент 2315739 (27.01.2008)

Класс C04B35/624 золь-гельная обработка

Наверх