термопарный датчик

Классы МПК:G01K7/02 с использованием термоэлектрических элементов, например термопар
Автор(ы):, , , ,
Патентообладатель(и):Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет" "МЭИ" (RU)
Приоритеты:
подача заявки:
2012-02-06
публикация патента:

Изобретение относится к области термометрии и может быть использовано в системах контроля технологических процессов. Термопарный датчик содержит защитный корпус 1 с герметизированной внутренней полостью, в которой расположены проволочные термоэлектроды 2 и 3. В верхней части корпуса размещен герметизированный вывод термоэлектродов с подсоединительными элементами 4 и 5. Датчик содержит цилиндрический керамический диэлектрический, выполненный из нитрида алюминия или алунда элемент 6, на котором с торцов цилиндрического элемента выполнена встречная намотка термоэлектродов, образующая плотную двухзаходную спираль с чередующимися витками термоэлектродов. Поперечно виткам спирали выполнены множественные точечные спаи 7 термоэлектродов. При двухзаходной намотке термоэлектродов на цилиндрический керамический диэлектрический элемент 6 и выполнении, например, методом лазерной сварки множественных точечных спаев 7 термоэлектродов 2 и 3 между смежными витками намотки источники термоЭДС в точечных спаях 7 оказываются включенными параллельно. При таком соединении спаев 7 их индивидуальные термоЭДС усредняются по множеству. Технический результат - повышение воспроизводимости термоэлектрических параметров датчиков температуры. 2 ил. термопарный датчик, патент № 2485460

термопарный датчик, патент № 2485460 термопарный датчик, патент № 2485460

Формула изобретения

Термопарный датчик, содержащий защитный корпус с герметизированной внутренней полостью, в которой расположены проволочные термоэлектроды, в верхней части защитного корпуса размещен герметизированный вывод термоэлектродов с подсоединительными элементами, отличающийся тем, что в него введен цилиндрический керамический диэлектрический элемент, на котором с торцов выполнена встречная намотка термоэлектродов, образующая плотную двухзаходную спираль с чередующимися витками термоэлектродов, поперечно виткам спирали выполнены точечные спаи термоэлектродов.

Описание изобретения к патенту

Изобретение относится к области термометрии и может быть использовано в системах контроля технологических процессов, где требуется высокая достоверность показаний и взаимозаменяемость датчиков температуры.

Известны датчики температуры, основанные на термоэлектрическом эффекте, возникающем в спае разнородных металлов или сплавов (Патент РФ № 2327122, МПК G01K 7/02, опубл. 20.06.2008).

Недостатком известных датчиков является индивидуальный характер выполнения спая, требующий снятия прилагаемой к датчику градуировочной характеристики.

Наиболее близким по технической сущности является датчик температуры, содержащий защитный корпус с герметизированной внутренней полостью, в нижней части корпуса размещен спай термоэлектродов, а в верхней размещен герметизированный вывод термоэлектродов с подсоединительными элементами (Патент РФ № 2289107, Бюл. № 7, МКИ G01k 7/02, опубл. 10.12.06). Недостатком известного устройства является плохая воспроизводимость характеристик датчика, обусловленная тем, что при индивидуальном изготовлении спая его геометрические размеры (длина, толщина), физические параметры спая (градиент перехода между термоэлектродами), технологические параметры (степень окисленности термоэлектродов, температура факела, окислитиельный или восстановительный характер факела и пр.) не поддаются контролю и удержанию в каких-либо заданных пределах. В результате влияния множественных и неуправляемых факторов термометрические характеристики датчиков от экземпляра к экземпляру сильно разнятся, поэтому к каждому датчику прилагается индивидуальная градуировочная характеристика.

Недостатками решения являются низкая востроизводимость термоэлектрических параметров и усложненные ремонтные работы или создание серии технологических агрегатов, так как при замене или установке датчиков температуры необходимо вводить в управляющие программы новые градуировочные характеристики.

Технической задачей, решаемой данным изобретением, является повышение воспроизводимости термоэлектрических параметров датчиков температуры.

Это достигается тем, что в термопарный датчик, содержащий защитный корпус с герметизированной внутренней полостью, в которой размещены проволочные термоэлектроды, в верхней части корпуса размещен герметизированный вывод термоэлектродов с подсоединительными элементами, введен цилиндрический керамический диэлектрический (нитрид алюминия или алунд) элемент, на котором с торцов цилиндрического элемента выполнена встречная намотка термоэлектродов, образующая плотную двухзаходную спираль с чередующимися витками термоэлектродов, поперечно виткам спирали выполнены точечные спаи термоэлектродов.

Сущность изобретение поясняется чертежами, где на фиг.1 показан общий вид датчика температуры, а на фиг.2 изображен чувствительный элемент.

Термопарный датчик содержит защитный корпус 1 с герметизированной внутренней полостью, в которой расположены проволочные термоэлектроды 2 и 3, в верхней части корпуса размещен герметизированный вывод термоэлектродов с подсоединительными элементами 4 и 5, цилиндрический керамический диэлектрический, выполненный из нитрида алюминия или алунда элемент 6, на котором с торцов цилиндрического элемента выполнена встречная намотка термоэлектродов, образующая плотную двухзаходную спираль с чередующимися витками термоэлектродов, поперечно виткам спирали выполнены множественные точечные спаи 7 термоэлектродов.

Термопарный датчик работает следующим образом.

При двухзаходной намотке термоэлектродов на цилиндрический керамический диэлектрический элемент 6 и выполнении, например, методом лазерной сварки множественных точечных спаев 7 термоэлектродов 2 и 3 между смежными витками намотки источники термоЭДС в точечных спаях 7 оказываются включенными параллельно. При таком соединении спаев 7 их индивидуальные термоЭДС усредняются по множеству. Другими словами, выпадающие за счет технологического разброса значения термоЭДС поглощаются статистически преобладающими значениями. Это означает, что следующий термопарный датчик данной конструкции за счет процесса осреднения будет обладать близкими к предыдущему характеристиками. Повышение воспроизводимости термоэлектрических параметров датчиков температуры позволяет заменять датчики в системах измерения температуры без корректировки заложенной градуировочной характеристики.

Цилиндрический керамический элемент 6 выполняет две функции. С одной стороны, это диэлектрическое основание для намотки двухзаходной спирали термоэлектродов, а с другой, высокая теплопроводность элемента 6 позволяет выровнять температуру всех спаев датчика.

Использование изобретения позволяет повысить воспроизводимость термоэлектрических параметров датчиков температуры.

Класс G01K7/02 с использованием термоэлектрических элементов, например термопар

устройство для измерения температуры газовых потоков -  патент 2522838 (20.07.2014)
передатчик параметров процесса с определением полярности термопары -  патент 2521746 (10.07.2014)
устройство для измерения температуры -  патент 2516036 (20.05.2014)
устройство для измерения температуры -  патент 2507488 (20.02.2014)
цифровой измеритель температуры -  патент 2504743 (20.01.2014)
погружной зонд -  патент 2502064 (20.12.2013)
контактная головка (варианты) -  патент 2496099 (20.10.2013)
преобразователь температуры в напряжение -  патент 2480719 (27.04.2013)
устройство для измерения давления, температуры и теплового потока -  патент 2476842 (27.02.2013)
способ измерения температуры термопарами, измерительная информационная система для его осуществления и температурный переходник -  патент 2475712 (20.02.2013)
Наверх