способ переработки углеводородсодержащего сырья

Классы МПК:C10G11/02 отличающийся используемыми катализаторами 
C10G47/02 отличающийся используемыми катализаторами
C10G49/02 отличающаяся используемыми катализаторами
B01J31/12 содержащие металлоорганические соединения или гидриды металлов
B01J23/00 Катализаторы, содержащие металлы или их оксиды или гидроксиды, не отнесенные к группе  21/00
B82B1/00 Наноструктуры
Автор(ы):,
Патентообладатель(и):ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ" (RU),
Галиахметов Раиль Нигматьянович (RU),
Мустафин Ахат Газизьянович (RU)
Приоритеты:
подача заявки:
2012-03-11
публикация патента:

Изобретение относится к нефтеперерабатывающей и нефтехимической отраслям промышленности. Изобретение касается способа переработки углеводородсодержащего сырья, в качестве которого используют преимущественно тяжелое и/или остаточное сырье, в котором в сырье дополнительно вводят металлорганическую соль, имеющую формулу M(OOC-R)n, или M(SOC-R)n или M(SSC-R) n, где R обозначает алкил, арил, изоалкил, трет-алкил, алкиларил, возможно включающий гидроксильную, кето-, амино-, карбоксильную, тиокарбаминовую группу, где n - 1-3, а М обозначает переходной металл из элементов Периодической системы элементов, при разложении которой получают наночастицы металла, либо наночастицы этих металлов, из расчета 0,001-0,1% мас. металла на массу сырья, при этом в качестве углеводородной добавки используют парафиновые углеводороды, или олефиновые углеводороды, или фракцию сланцевой смолы, или их смеси в количестве 2,0-20,0% мас. Технический результат - увеличение степени конверсии углеводородсодержащего сырья, повышение выхода дистиллятных фракций. 2 з.п. ф-лы, 22 табл., 16 пр.

Изобретение относится к нефтеперерабатывающей и нефтехимической отраслям промышленности и может быть использовано для увеличения глубины переработки углеводородсодержащего сырья.

Известен способ получения котельного топлива (SU 1675318, опубл. 07.09.1991). Тяжелые нефтяные остатки предварительно нагревают и затем подвергают висбрекингу в трубчатой печи в присутствии концентрата олефиновых углеводородов с целью достижения лучшей степени конверсии сырьевой смеси.

Известен способ получения компонента топочных мазутов (RU 1617948, опубл. 30.10.1994) путем висбрекинга нефтяных остатков в присутствии высокоароматизированной добавки, при этом с целью снижения вязкости целевого продукта в качестве добавки используют экстракт селективной очистки масел или остатки каталитического крекинга, выкипающие в интервале 420ºС - к.к., взятые в количестве 2-8% мас.

Однако известный способ направлен на достижение снижения структурной вязкости остатка висбрекинга.

Известен способ переработки остаточных нефтепродуктов (RU 2021994, опубл. 30.10.1994). Остаточные нефтепродукты подвергают висбрекингу к присутствии ароматической фракции или полярного соединения. Исходное сырье предварительно подвергают кавитационной обработке. В качестве ароматической фракции используют экстракт селективной очистки масел или газойли каталитического крекинга в количестве 2,0-8,0% мас. В качестве полярного соединения используют ацетон в количестве 0,001-0,05% мас.

Недостатком известного способа является дополнительная обработка остаточных нефтепродуктов посредством кавитационной обработки, что экономически нецелесообразно.

Задачей настоящего изобретения является увеличение степени конверсии углеводородсодержащего сырья, включая тяжелое и остаточное сырье, повышение выхода дистиллятных фракций.

Поставленная задача решается за счет того, что способ переработки углеводородсодержащего сырья включает термоконверсию сырья с введением углеводородной добавки, в качестве которой используют парафиновые углеводороды, или олефиновые углеводороды, или фракцию сланцевой смолы, или их смеси в количестве 2,0-20,0 % мас., при этом в сырье дополнительно вводят металлорганическую соль, имеющую формулу M(OOC-R) n, или M(SOC-R)n, или M(SSC-R)n, где R обозначает алкил, арил, изоалкил, трет-алкил, алкиларил, возможно включающий гидроксильную, кето-, амино-, карбоксильную, тиокарбаминовую группу, где n=1-3, а М обозначает переходной металл из элементов Периодической системы элементов, при разложении которой получают наночастицы металла, либо наночастицы этих металлов, из расчета 0,001-0,1% мас. металла на массу сырья.

Понятие «термоконверсии», используемое в настоящем изобретении, предполагает атмосферную перегонку и/или вакуумную перегонку, или однократное испарение, или дистилляцию, или перегонку с ректификацией, а также термический крекинг (глубокий термический крекинг), или висбрекинг (легкий термический крекинг), или их сочетания.

В качестве углеводородсодержащего сырья используют преимущественно тяжелое и/или остаточное сырье с плотностью более 850 г/см3: тяжелые нефти, вакуумные газойли, прямогонные мазуты, гудроны, полугудроны, крекинг-остатки, нефтяные шламы индивидуально или в смеси, а также их смеси с горючими ископаемыми (горючие сланцы, битуминозные пески).

Пример 1. В образцы с мазутом западносибирской нефти с плотностью 0,89 г/см3 с добавлением и без добавления твердых парафиновых углеводородов (н.к. 405ºС) в массовом соотношении 4:1 соответственно вводят 2-этилгексаноат кобальта из расчета 0,1% мас. кобальта на массу исходного сырья и подвергают перегонке по Энглеру. Результаты разгонки представлены в табл. 1 и 2.

Таблица 1
Выход фракций без добавления твердых парафиновых углеводородов
Температура, °C219 240 271285 294295 301307 312321 333334
Объем дистиллята, мл5 1015 2025 3035 4045 5055 60

Таблица 2
Выход фракций с добавлением твердых парафиновых углеводородов
Температура, °C219 252 277296 294317 334342 347350 354360
Объем дистиллята, мл5 1015 2025 3035 4045 5060 85

В табл. 4 и 3 представлены материальные балансы перегонки по Энглеру мазута западносибирской нефти с добавлением и без добавления твердых парафиновых углеводородов.

Таблица 3
Материальный баланс перегонки по Энглеру мазута западносибирской нефти без добавления твердых парафиновых углеводородов
Наименование продукта Загрузка, г %Получено Масса фракции, г % к сырью
Мазут без добавления твердых парафиновых углеводородов 146,3 1001. Фракция (до 352ºС)80,6 55,1
2. Фракция (360ºС и выше) 58,840,2
3. Потери (газ) 6,9 4,7
Итого способ переработки углеводородсодержащего сырья, патент № 2485168 способ переработки углеводородсодержащего сырья, патент № 2485168 способ переработки углеводородсодержащего сырья, патент № 2485168 146,3 100

Таблица 4
Материальный баланс перегонки по Энглеру смеси мазута западносибирской нефти и твердых парафиновых углеводородов в массовом соотношении 4:1
Наименование продуктаЗагрузка, г% ПолученоМасса фракции, г% к сырью
Мазут с добавлением твердых парафиновых углеводородов 118,1 1001. Фракция (до 360ºС)72,9 61,7
2. Фракция (360ºС и выше 39,033,0
3. Потери (газ) 6,2 5,3
Итого способ переработки углеводородсодержащего сырья, патент № 2485168 способ переработки углеводородсодержащего сырья, патент № 2485168 способ переработки углеводородсодержащего сырья, патент № 2485168 118,1 100

Образцы промежуточного сырья изучают на сканирующем зондовом микроскопе Solver Pro-M фирмы NT-MDT. Результаты измерений показывают, что средневесовой размер наночастиц кобальта составляет 27 нм.

Пример 2. Разгонку смеси мазута с твердыми парафиновыми углеводородами по Энглеру проводят также как в примере 1, лишь с тем отличием, что к качестве катализатора берут наночастицы никеля (средневесовой размер частиц 34 нм) и вольфрама (средневесовой размер частиц 54 нм) в количестве 0,001% мас. (при массовом соотношении никеля и вольфрама 1:1) на массу мазута. Результаты разгонки представлены в табл. 5.

Таблица 5
Выход фракций с добавлением твердых парафиновых углеводородов
Температура, °C219 250 267286 290307 315331 338342 349350
Объем дистиллята, мл5 1015 2025 3035 4045 5060 85

Пример 3. В дистиллят, выкипающий в пределах 300-360 С, полученный разгонкой мазута по Энглеру как в примере 1, добавляют наночастицы молибдена (средневесовой размер частиц 61 нм) в количестве 0,001% мас. и твердые парафиновые углеводороды в количестве 10,0% мас. и кипятят с обратным холодильником в течение 15 мин. Полученную смесь подвергают разгонке по Энглеру. Результаты разгонки представлены в табл. 6.

Таблица 6
Выход фракций с добавлением твердых парафиновых углеводородов
Температура, °C83 154168 184187 189201 237262 276304 333
Объем дистиллята, мл5 10 1520 2530 4050 6070 8095

Пример 4. Во фракцию с температурой н.к. 360ºС, полученную при разгонке мазута но примеру 1, в присутствии наночастиц молибдена в количестве 0,1% мас. (средневесовой размер частиц 61 нм) добавляют твердые парафиновые углеводороды в количестве 10,0% мас. и подвергают разгонке по Энглеру. Результаты разгонки представлены в табл.7.

Таблица 7
Выход фракций с добавлением твердых парафиновых углеводородов
Температура, °C227 254 268294 310316 329337 341344 349361
Объем дистиллята, мл5 1015 2025 3035 4045 5055 73

Пример 5. Гудрон с плотностью 1,08 г/см3, полученный из западносибирской нефти, с добавлением диэтилдитиокарбамат железа из расчета 0,01% мас. железа на массу исходного сырья и добавлением жидких парафиновых углеводородов в количестве 20,0% мас. подвергают процессу висбрекинга при t=400ºC и Р=0,5 МПа. Результаты представлены в табл. 8.

Таблица 8
Фракции Выход, % мас.
С добавлением 0,01% мас. железа и 20,0% мас. парафиновых углеводородов
Фракции н.к. и до 360ºС 84
Фракция н.к. 360ºС и выше 10

Крекинг-остаток изучают на содержание наночастиц методом АСМ микроскопии на сканирующем зондовом микроскопе Solver Pro-M фирмы NT-MDT. Результаты измерений показывают, что размер 93% наночастиц железа составляет 5-45 нм.

Пример 6. Аналогично примеру 5, за исключением того, что вместо диэтилдитиокарбамата железа добавляют кобальтовую соль диэтилтиокарбаминовой кислоты. Результаты представлены в табл.9.

Таблица 9
Фракции Выход, % мас.
С добавлением 0,01% мас. кобальта и 20,0% мас. жидких парафиновых углеводородов
Фракции н.к. и до 360ºС 87
Фракция н.к. 360ºС и выше 11

Крекинг-остаток изучают на содержание наночастиц методом АСМ микроскопии на сканирующем зондовом микроскопе Solver Pro-M фирмы NT-MDT. Результаты измерений показывают, что размер 82% наночастиц кобальта составляет 1-20 нм.

Пример 7. Вакуумный газойль с плотностью 0,870 г/см3 с добавлением ванадиевой соли аминогексановой кислоты из расчета 0,001% мас. ванадия на массу сырья и добавлением 2,0% мас. твердых парафиновых углеводородов направляют на стадию термического крекинга, осуществляемого при температуре 450ºС и давлении 0,8 МПа. Результаты представлены в табл. 10.

Таблица 10
Фракции Выход, % мас.
С добавлением 0,001% мас. ванадия и 2,0% мас. твердых парафиновых углеводородов
Фракции н.к. и до 360ºС 87
Фракция н.к. 360ºС и выше 12

Крекинг-остаток изучают на содержание наночастиц методом АСМ микроскопии на сканирующем зондовом микроскопе Solver Pro-M фирмы NT-MDT. Результаты измерений образцов показывают, что размер 83% наночастиц ванадия составляет 10-50 нм.

Пример 8. В гудрон с плотностью 1,08 г/см3, полученный из западносибирской нефти, добавляют кобальтовой соли диэтилтиокарбаминовой кислоты из расчета 0,1% мас. кобальта на массу сырья и 20,0% мас. смеси олефиновых углеводородов С511 и подвергают процессу висбрекинга при t=400°С и P=1,5 МПа, а затем фракционированию атмосферной перегонкой. Результаты дистилляции представлены в табл.11.

Таблица 11
Наименование продукта Загрузка, г% Получено Масса фракции, г % к сырью
Продукт висбрекинга гудрона 1116,3100 1. Фракция (до 360°С) 989,088,6
способ переработки углеводородсодержащего сырья, патент № 2485168 способ переработки углеводородсодержащего сырья, патент № 2485168 2. Фракция (выше 360°С) 72,56,5
способ переработки углеводородсодержащего сырья, патент № 2485168 способ переработки углеводородсодержащего сырья, патент № 2485168 3. Потери (газ) 54,8 4,9
Итого способ переработки углеводородсодержащего сырья, патент № 2485168 способ переработки углеводородсодержащего сырья, патент № 2485168 способ переработки углеводородсодержащего сырья, патент № 2485168 1116,3 100

Образцы промежуточного сырья изучают на сканирующем зондовом микроскопе Solver Pro-M фирмы NT-MDT. Результаты измерений показывают, что средневесовой размер наночастиц кобальта составляет 57 нм.

Пример 9. Разгонку мазута по Энглеру проводят также как в примере 2, лишь с тем отличием, что в мазут добавляют 20,0% мас. смеси жидких парафиновых углеводородов, полученных из дистиллятов высокопарафинистых нефтей, выкипающих в пределах 240-360°С, а в качестве катализатора используют 2-оксогексоноат палладия из расчета 0,01% мас. палладия на массу сырья. Результаты разгонки представлены в табл.12 и 13.

Таблица 12
Выход фракций с добавлением жидких парафиновых углеводородов
Температура, °С215 231 253275 291308 319333 344348 356358
Объем дистиллята, мл5 1015 2025 3035 4045 5060 85

Таблица 13
Материальный баланс перегонки по Энглеру смеси мазута западносибирской нефти и жидких парафиновых углеводородов
Наименование продукта Загрузка, г% Получено Масса фракции, г % к сырью
Мазут с добавлением жидких парафиновых 106,2100 1. Фракция (до 360°С) 84,179,2
способ переработки углеводородсодержащего сырья, патент № 2485168 способ переработки углеводородсодержащего сырья, патент № 2485168 2. Фракция (360°С и выше) 16,615,6
углеводородов способ переработки углеводородсодержащего сырья, патент № 2485168 способ переработки углеводородсодержащего сырья, патент № 2485168 3. Потери (газ) 6,5 5,2
Итого способ переработки углеводородсодержащего сырья, патент № 2485168 способ переработки углеводородсодержащего сырья, патент № 2485168 способ переработки углеводородсодержащего сырья, патент № 2485168 106,2 100

Образцы фракции 360°С и выше изучают на сканирующем зондовом микроскопе Solver Pro-M фирмы NT-MDT. Результаты измерений показывают, что средневесовой размер наночастиц палладия составляет 63 нм.

Пример 10. Разгонку мазута по Энглеру проводят также как в примере 9, лишь с тем отличием, что в качестве катализатора используют 6-амииогексаноат марганца. Результат разгонки представлены в табл.14 и 15.

Таблица 14
Выход фракций с добавлением твердых парафиновых углеводородов
Температура, °C221 241 256275 285312 325344 350353 358362
Объем дистиллята, мл5 1015 2025 3035 4045 5060 85

Таблица 15
Материальный баланс перегонки по Энглеру смеси мазута западносибирской нефти и жидких парафиновых углеводородов
Наименование продукта Загрузка, г% Получено Масса фракции, г % к сырью
Мазут с добавлением твердых парафиновых углеводородов 102,6 1001. Фракция (до 360ºС)80,8 78,7
2. Фракция (360ºС и выше 16,916,5
3. Потери (газ) 5,2 4,8
Итого способ переработки углеводородсодержащего сырья, патент № 2485168 способ переработки углеводородсодержащего сырья, патент № 2485168 способ переработки углеводородсодержащего сырья, патент № 2485168 102,6 100

Образцы фракции выше 362ºС изучают на сканирующем зондовом микроскопе Solver Pro-M фирмы NT-MDT. Результаты измерений показывают, что средневесовой размер наночастиц марганца составляет 106 нм.

Пример 11. Разгонку мазута по Энглеру проводят также как в примере 9, лишь с тем отличием, что в качестве катализатора используют 6-оксигексаноат молибдена. Результаты разгонки представлены в табл. 16 и 17.

Таблица 16
Выход фракций с добавлением твердых парафиновых углеводородов
Температура, ºC224 243 258275 284310 323344 351354 358362
Объем дистиллята, мл5 1015 2025 3035 4045 5060 85

Таблица 17
Материальный баланс перегонки по Энглеру смеси мазута западносибирской нефти и жидких парафиновых углеводородов
Наименование продукта Загрузка, г% Получено Масса фракции, г % к сырью
Мазут с добавлением твердых парафиновых углеводородов 114,3 1001. Фракция (до 360ºС)87,9 76,9
2. Фракция (360ºС и выше 19,817,3
3. Потери (газ) 6,6 5,8
Итого способ переработки углеводородсодержащего сырья, патент № 2485168 способ переработки углеводородсодержащего сырья, патент № 2485168 способ переработки углеводородсодержащего сырья, патент № 2485168 114,3 100

Образцы фракции выше 362ºС изучают на сканирующем зондовом микроскопе Solver Pro-M фирмы NT-MDT. Результаты измерений показывают, что средневесовой размер наночастиц молибдена составляет 66 нм.

Пример 12. Процесс проводят в условиях примера 7, за исключением того, что в качестве углеводородной добавки используют сланцевую смолу в количестве 2,0% мас., имеющую следующие показатели: плотность - 0,991 г/см3, условная вязкость при 80°С - 2,54ºВУ, кинематическая вязкость при 80ºС - 17,0 сСт, температура застывания - минус 20ºС, содержание, мас.%: воды - 0,5; механические примеси - отсутствуют, элементный состав, мас.%: С - 79,96, Н - 9,86; О - 9,46; S - 0,68, а в качестве металлорганической соли используют нафтенат хрома из расчета 0,1% мас. хрома на массу исходного сырья. Результаты представлены в табл.18.

Таблица 18
ФракцииВыход, % мас.
С добавлением 0,1% мас. хрома и 2,0% мас. фракции сланцевой смолы
Газ 4,5
Фракции н.к. 360°С 69,5
Фракция н.к. 360°С и выше 15

Размер 91% наночастиц хрома составляет 30-50 нм.

Пример 13. В качестве сырья используют смесь гудрона с плотностью 1,002 г/см3 и нефти Шугуровского месторождения, имеющей следующие показатели: плотность - 0,914 г/см3, вязкость кинематическая при 20°С - 220,23 сСт, вязкость условная при 20°С - 29,73° ВУ, температура застывания минус 20°С, в массовом соотношении 1:1. Процесс висбрекинга проводят в условиях примера 8, при этом в качестве соли используют 4-оксопентаноат марганца, а смесь олефиновых углеводородов используют в количестве 2,0% мас. Результаты представлены в табл.19.

Таблица 19
ФракцииВыход, % мас.
С добавлением 0,1% мас. марганца и 2,0% мас. олефиновых углеводородов
Газ 4,4
Фракции н.к. 360°С 67,3
Фракция н.к. 360°С и выше 15,2

Размер 89% наночастиц марганца составляет 65 нм.

Пример 14. Процесс проводят в условиях примера 12, за исключением того, что фракцию сланцевой смолы используют в количестве 20,0% мас. Результаты представлены в табл.20.

Таблица 20
Фракции Выход, % мас.
С добавлением 0,01% мас. хрома и 20,0% мас. фракции сланцевой смолы
Газ 3,5
Фракции н.к. 360ºС 74,5
Фракция н.к. 360ºС и выше 11

Размер 88% наночастиц хрома составляет 60-90 нм.

Пример 15. Процесс проводят в условиях примера 7, за исключением того, что в качестве углеводородной добавки используют смесь жидких парафиновых углеводородов, олефиновых углеводородов и фракции сланцевой смолы (массовое соотношение 1:1:1) в количестве 20,0% мас. Результаты представлены в табл. 21.

Таблица 21
Фракции Выход, % мас.
С добавлением 0,001% мас. ванадия и 20,0% мас. смеси жидких парафиновых углеводородов, олефиновых углеводородов и фракции сланцевой смолы в соотношении 1:1:1
Фракции н.к. и до 360ºС 85
Фракция н.к. 360ºС и выше 9

Размер 82% наночастиц ванадия составляет 40-75 нм.

Пример 16. Аналогично примеру 7, за исключением того, что вместо вакуумного газойля берут сырую нефть с плотностью 0,7488 г/см3 . Результаты разгонки представлены к табл. 22.

Таблица 22
Фракции Выход, % мас.
С добавлением 0,001% мас. ванадия и 2,0% мас. твердых парафиновых углеводородов
Фракции н.к. и до 360ºС 88
Фракция н.к. 360ºС и выше 7

Как показывают результаты, заявленный способ совместной переработки углеводородсодержащего сырья с углеводородной добавкой с применением предлагаемого катализатора позволяет получить дополнительно дистиллятные фракции.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ переработки углеводородсодержащего сырья, в качестве которого используют преимущественно тяжелое и/или остаточное сырье, выбранное из группы: тяжелые нефти, вакуумные газойли, прямогонные мазуты, гудроны, полугудроны крекинг-остатки индивидуально или в смеси, включающий термоконверсию сырья с введением углеводородной добавки, отличающийся тем, что в сырье дополнительно вводят металлорганическую соль, имеющую формулу M(OOC-R)n, или M(SOC-R) n, или M(SSC-R)n, где R обозначает алкил, арил, изоалкил, трет-алкил, алкиларил, возможно включающий гидроксильную, кето-, амино-, карбоксильную, тиокарбаминовую группу, где n = 1-3, М обозначает переходный металл из элементов Периодической системы элементов, при разложении которой получают наночастицы металла либо наночастицы этих металлов, из расчета 0,001-0,1% металла на массу сырья, при этом в качестве углеводородной добавки используют парафиновые углеводороды, или олефиновые углеводороды, или фракцию сланцевой смолы, или их смеси в количестве 2,0-20,0 мас.%.

2. Способ по п.1, отличающийся тем, что в качестве углеводородсодержащего сырья используют нефтяные шламы индивидуально или в смеси с тяжелыми нефтями, вакуумными газойлями, прямогонными мазутами, гудронами, полугудронами, крекинг-остатками, а также смеси нефтяных шламов, тяжелых нефтей, вакуумных газойлей, прямогонных мазутов, гудронов, полугудронов крекинг-остатков с горючими ископаемыми из группы: горючие сланцы, битуминозные пески.

3. Способ по п.1, отличающийся тем, что в качестве углеводородсодержащего сырья используют сырье с плотностью более 0,850 г/см3 .


Скачать патент РФ Официальная публикация
патента РФ № 2485168

patent-2485168.pdf
Патентный поиск по классам МПК-8:

Класс C10G11/02 отличающийся используемыми катализаторами 

Патенты РФ в классе C10G11/02:
способ переработки тяжелого углеводородного сырья -  патент 2495087 (10.10.2013)
способ переработки углеводородсодержащего сырья (варианты) -  патент 2485167 (20.06.2013)
применение органической соли для увеличения глубины переработки углеводородсодержащего сырья и способ увеличения глубины переработки углеводородсодержащего сырья -  патент 2472842 (20.01.2013)
способ каталитической конверсии (варианты) -  патент 2464298 (20.10.2012)
способ переработки тяжелого нефтяного сырья -  патент 2445344 (20.03.2012)
композиция катализа, предназначенная для переработки тяжелого исходного сырья -  патент 2427424 (27.08.2011)
способ получения ацетилена из метана -  патент 2409542 (20.01.2011)
способ сокращения выбросов nox в процессах полного сжигания продуктов крекинга -  патент 2394065 (10.07.2010)
способ получения олефинов -  патент 2391383 (10.06.2010)
способ глубокой одновременной переработки жидкого и твердого углеводородсодержащего сырья и установка для его осуществления -  патент 2374299 (27.11.2009)

Класс C10G47/02 отличающийся используемыми катализаторами

Патенты РФ в классе C10G47/02:
модифицированные цеолиты y с тримодальной внутрикристаллической структурой, способ их получения и их применение -  патент 2510293 (27.03.2014)
способ получения дизельного топлива с улучшенными противоизносными и цетановыми характеристиками -  патент 2499032 (20.11.2013)
способ переработки тяжелого углеводородного сырья -  патент 2495087 (10.10.2013)
совместная обработка дизельного топлива и растительного масла для получения гибридного дизельного биотоплива с низкой температурой помутнения -  патент 2487923 (20.07.2013)
способ переработки углеводородсодержащего сырья (варианты) -  патент 2485167 (20.06.2013)
способ регенерации металлов из тяжелых продуктов гидропереработки -  патент 2469113 (10.12.2012)
процесс селективного гидрокрекинга с применением бета цеолита -  патент 2424276 (20.07.2011)
способ получения топливных дистиллятов -  патент 2398812 (10.09.2010)
способы и системы водородообработки и способы улучшения существующей системы с неподвижным слоем -  патент 2393203 (27.06.2010)
композиция катализатора гидрокрекинга -  патент 2387480 (27.04.2010)

Класс C10G49/02 отличающаяся используемыми катализаторами

Патенты РФ в классе C10G49/02:
каталитическая система в процессе термолиза тяжелого нефтяного сырья и отходов добычи и переработки нефти -  патент 2524211 (27.07.2014)
способ переработки тяжелого углеводородного сырья -  патент 2495087 (10.10.2013)
способ переработки углеводородсодержащего сырья (варианты) -  патент 2485167 (20.06.2013)
процесс изменения вязкости сырой нефти -  патент 2481389 (10.05.2013)
железооксидный катализатор для термолиза тяжелого углеводородного сырья -  патент 2442648 (20.02.2012)
способ восстановления каталитической активности отработанного катализатора водородообработки, отработанный катализатор водородообработки, имеющий восстановленную каталитическую активность, и способ водородообработки -  патент 2372991 (20.11.2009)
способ восстановления каталитической активности отработанного катализатора водородообработки, отработанный катализатор водородообработки, имеющий восстановленную каталитическую активность, и способ водородообработки -  патент 2372143 (10.11.2009)
способ гидропереработки углеводородного сырья -  патент 2324725 (20.05.2008)
композиция, способ снижения способности к саморазогреву предварительно сульфурированного или сульфидированного катализатора, способ приготовления катализатора, способ гидрообработки, способ транспортировки и способ разгрузки катализатора -  патент 2129915 (10.05.1999)

Класс B01J31/12 содержащие металлоорганические соединения или гидриды металлов

Патенты РФ в классе B01J31/12:
способ получения катализатора полимеризации лактонов или поликонденсации альфа-оксикислот -  патент 2525235 (10.08.2014)
способ получения катализатора полимеризации эпсилон-капролактама -  патент 2522540 (20.07.2014)
способ получения катализатора для олигомеризации пропилена на основе комплексных соединений никеля -  патент 2500471 (10.12.2013)
способ переработки тяжелого углеводородного сырья -  патент 2495087 (10.10.2013)
катализатор и способ дисмутации содержащих водород галогенсиланов -  патент 2492924 (20.09.2013)
способ переработки углеводородсодержащего сырья (варианты) -  патент 2485167 (20.06.2013)
применение органической соли для увеличения глубины переработки углеводородсодержащего сырья и способ увеличения глубины переработки углеводородсодержащего сырья -  патент 2472842 (20.01.2013)
способ получения 1,3-дихлорадамантана -  патент 2459797 (27.08.2012)
стереоселективный метод получения напряженных каркасных карбоциклических соединений на основе норборнадиена -  патент 2458910 (20.08.2012)
способ формирования катализатора на основе катионного комплекса никеля для аддитивной полимеризации норборнена -  патент 2448122 (20.04.2012)

Класс B01J23/00 Катализаторы, содержащие металлы или их оксиды или гидроксиды, не отнесенные к группе  21/00

Патенты РФ в классе B01J23/00:
катализатор для окисления сернистых соединений -  патент 2529500 (27.09.2014)
способ получения тонкодисперсной жидкой формы фталоцианинового катализатора демеркаптанизации нефти и газоконденсата -  патент 2529492 (27.09.2014)
способ получения катализатора для процесса метанирования -  патент 2528988 (20.09.2014)
способ получения ультранизкосернистых дизельных фракций -  патент 2528986 (20.09.2014)
способ получения этилена -  патент 2528830 (20.09.2014)
способ получения этилена -  патент 2528829 (20.09.2014)
способ и устройство для изготовления частиц защищенного катализатора с помощью расплавленного органического вещества -  патент 2528424 (20.09.2014)
катализатор для переработки тяжелого нефтяного сырья и способ его приготовления -  патент 2527573 (10.09.2014)
способ приготовления катализатора и способ получения пероксида водорода -  патент 2526460 (20.08.2014)
каталитическая композиция и способ олигомеризации этилена -  патент 2525917 (20.08.2014)

Класс B82B1/00 Наноструктуры

Патенты РФ в классе B82B1/00:
многослойный нетканый материал с полиамидными нановолокнами -  патент 2529829 (27.09.2014)
материал заменителя костной ткани -  патент 2529802 (27.09.2014)
нанокомпозитный материал с сегнетоэлектрическими характеристиками -  патент 2529682 (27.09.2014)
катализатор циклизации нормальных углеводородов и способ его получения (варианты) -  патент 2529680 (27.09.2014)
способ определения направления перемещения движущихся объектов от взаимодействия поверхностно-активного вещества со слоем жидкости над дисперсным материалом -  патент 2529657 (27.09.2014)
способ формирования наноразмерных структур -  патент 2529458 (27.09.2014)
способ бесконтактного определения усиления локального электростатического поля и работы выхода в нано или микроструктурных эмиттерах -  патент 2529452 (27.09.2014)
способ изготовления стекловидной композиции -  патент 2529443 (27.09.2014)
комбинированный регенеративный теплообменник -  патент 2529285 (27.09.2014)
способ изготовления тонкопленочного органического покрытия -  патент 2529216 (27.09.2014)


Наверх