ПАТЕНТНЫЙ ПОИСК В РФ
НОВЫЕ ПАТЕНТЫ, ЗАЯВКИ НА ПАТЕНТ
БИБЛИОТЕКА ПАТЕНТОВ НА ИЗОБРЕТЕНИЯ

способ получения поликристаллического материала на основе кубического нитрида бора, содержащего алмазы

Классы МПК:B01J3/06 способы, использующие сверхвысокое давление, например для образования алмазов; устройства для этой цели, например матрицы
B24D3/00 Физические свойства абразивных тел или листов, например абразивных поверхностей особого рода; абразивные тела или листы, отличающиеся по своей структуре
C04B35/5831 на основе кубического нитрида бора
C30B28/00 Получение гомогенного поликристаллического материала с определенной структурой
C30B29/38 нитриды
C30B29/04 алмаз
Автор(ы):, , , ,
Патентообладатель(и):Открытое акционерное общество "Научно-исследовательский институт природных, синтетических алмазов и инструмента" (ОАО "ВНИИАЛМАЗ") (RU)
Приоритеты:
подача заявки:
2011-12-27
публикация патента:

Изобретение направлено на получение синтетических поликристаллических материалов, основу которых составляет поликристаллический кубический нитрид бора, содержащий алмазные зерна. Материал предназначен для изготовления режущих элементов, которыми оснащаются буровые коронки, инструментов для правки шлифовальных кругов, для сверления и резки природных и искусственных строительных материалов. Способ включает воздействие на шихту, включающую гексагональный и кубический нитрид бора и порошки алмаза, давлением при температуре в области термодинамической стабильности кубического нитрида бора и алмаза диаграмм состояния, при этом алмазные порошки берут с размером зерен 200-3000 мкм в количестве 5,0-37,5 об.%, гексагональный нитрид бора - размером 1-3 мкм, кубический нитрид бора - размером 1-5 мкм. Крупнозернистые алмазные порошки в мелкозернистой матрице синтезированного кубического бора позволяют увеличить работоспособность материала при бурении пород V-XII категорий буримости. 2 з.п. ф-лы.

Изобретение направлено на получение синтетических поликристаллических материалов, основу которых составляет поликристаллический кубический нитрид бора, содержащий алмазные зерна. Материал предназначен для изготовления режущих элементов, которыми оснащаются буровые коронки.

Известны способы получения спеченных материалов, включающих кубический нитрид бора и алмаз. В патенте ЕР № 0181258 предложен спеченный алмазный компакт для бурового инструмента, получаемый спеканием кубического нитрида бора, со связующим на основе кремния. В массу дополнительно вводят источник углерода, в качестве которого предпочтительно используют алмаз, для получения в готовом материале связки из карбида кремния. В RU № 487845 материал для бурового инструмента получают спеканием алмаза, кубического нитрида бора и комплексных соединений на основе окислов щелочно-земельных металлов. В патенте US № 3767371 материал для резания, сверления получают спеканием кубического нитрида бора, алмаза и карбидов металлов. Во всех вышеперечисленных решениях для спекания используют соразмерные микро - и шлифпорошки кубического нитрида бора и алмаза с размером зерен до 160 мкм. Спекание проводят в условиях высоких давлений и температур. Недостаток способа получения спеченного материала заключается в том, что при спекании образуется композиционный материал со значительным содержанием связки, что ухудшает его износостойкость в целом.

Известны способы получения поликристаллических материалов на основе кубического нитрида бора с включением алмазных порошков. В патентах US № № 3852078 и 3894850 поликристаллический материал изготавливают из смеси порошков гексагонального нитрида бора и алмаза, при этом алмазные порошки берут размером менее 10 мкм, порошки кубического нитрида бора - размером до 3 мкм. В результате синтеза получают мелкозернистый материал, используемый в режущих инструментах, сверлах, абразивных инструментах и в виде износостойких частей машин. Использование этого материала в буровом инструменте не предусматривается т.к. буровые коронки, оснащенные таким материалом, будут иметь недостаточную абразивную способность.

Наиболее близким техническим решением является способ, описанный в патенте ЕР № 0482372, кл B01J 3/06, 1992 г. В соответствии с этим изобретением для получения поликристаллического материала берут порошки алмаза и кубического нитрида бора или смесь порошков кубического и гексагонального нитрида бора, смесь подвергают давлению и нагреву с параметрами, лежащими в области стабильности кубического нитрида бора. Получают плотный термостойкий и износостойкий поликристаллический материал со связью кристалл-кристалл без дополнительного связующего. Для получения материала берут исходные алмазные порошки зернистостью предпочтительно 4-75 мкм, порошки кубического нитрида бора - 0,1-10 мкм. Доля алмазов составляет 50-95 мас.%. В поликристалле порошки алмаза практически соразмерны с порошками кубического нитрида бора. Высокое содержание алмазных порошков и соразмерность всех порошков способствуют получению материала с равномерной плотной мелкозернистой структурой, основу которой составляют достаточно плотноуложенные алмазные порошки. Такой материал имеет повышенную износостойкость, на режущих элементах из этого материала можно получить острую режущую кромку и он может успешно использоваться как режущие вставки в лезвийных инструментах - резцах, сверлах, правящем инструменте и т.п. В породоразрушающих инструментах для бурения пород V-XII категории буримости с отбором керна эффективность работы такого материала, а именно его работоспособность невысокая, т.к. большая контактная площадь рабочей поверхности с забоем приводит к значительным осевым усилиям при малом внедрении алмазных зерен в породу.

Техническая задача заключается в увеличении работоспособности материала при бурении пород V-XII категорий буримости, позволяющей производить буровые работы с более высокими режимами бурения и тем самым повысить производительность работ.

Технический результат достигается тем, что в способе получения поликристаллического материала на основе кубического нитрида бора, содержащего алмазы, воздействием на шихту, включающую гексагональный и кубический нитрид бора и порошки алмаза, давлением при температуре в области термодинамической стабильности кубического нитрида бора и алмаза диаграмм состояния, алмазные порошки берут с размером зерен 200-3000 мкм в количестве 5,0-37,5 об.%.

Гексагональный нитрид бора берут размером 1-3 мкм

Кубический нитрид бора берут размером 1-5 мкм.

Сущность изобретения заключается в том, что для изготовления поликристаллического материала берут алмазные порошки крупной зернистости 200-3000 мкм, которые прочно удерживаются мелкозернистым поликристаллическим кубическим бором, полученным в результате синтеза и выполняющим роль связки. Крупные алмазы, содержащиеся в поликристалле в количестве 5,0-27,5 об.%, выполняют роль множества дополнительных режущих алмазных кромок, обеспечивающих эффект скалывания горной породы и тем самым способствуя ее эффективному разрушению. Более высокая работоспособность материала дает возможность увеличить режимы бурения и таким образом увеличить производительность и ресурс работы материала (инструмента) в целом.

Способ осуществляется следующим образом.

В реакционную ячейку камеры высокого давления помещают шихту, содержащую порошки гексагонального и кубического нитрида бора и алмаза. Снаряженную ячейку помещают в камеру высокого давления и сжимают ее до давления 60-80 кбар с одновременным нагревом до величин, соответствующих области термодинамической стабильности кубического нитрида бора и алмаза диаграмм состояния. После выдержки в течение заданного времени отключают электрический ток, снижают давление до нормального и извлекают готовый продукт из камеры. Из готового продукта путем механической обработки формируют режущий элемент необходимой формы, который крепят на корпусе буровой коронки. Крепление можно производить любым известным способом, преимущественно путем пайки, методом порошковой металлургии и др.

Синтезированный материал представляет собой поликристалл, в котором крупные зерна алмаза прочно удерживаются связующим из кубического нитрида бора, имеющего тонкую плотную структуру с межкристаллитной связью зерен кубического нитрида друг с другом.

Порошки гексагонального нитрида бора при режимах синтеза в области термодинамической стабильности кубического нитрида бора и алмаза диаграмм состояния преобразуются в кубический нитрид бора. Вводимые в шихту порошки кубического нитрида бора способствуют более полному превращению гексагонального нитрида бора в кубическую форму. Обычно в шихту рекомендуется вводить 10-15 об.% кубического нитрида бора.

Зернистость порошков гексагонального нитрида бора 1-3 мкм и кубического нитрида бора 1-5 мкм обеспечивает получение материала с тонкой плотной структурой, прочно удерживающей крупные алмазные зерна. Порошки гексагонального и кубического нитрида более мелкой зернистости использовать не рационально, кроме того существенно увеличивается трудоемкость изготовления инструмента; при использовании порошков большей зернистости - удержание алмазных зерен, особенно крупных алмазных зерен, в готовом материале будет недостаточно прочным из-за повышенной пористости материала.

Поликристаллический материал с алмазными зернами зернистостью 200-3000 мкм, прочно удерживаемыми связкой из мелкозернистого кубического нитрида бора, работает как «многорезцовый» абразивный инструмент. Это позволяет увеличить режимы работы инструмента и соответственно увеличить производительность бурения, т.к. производительность работы инструмента увеличивается пропорционально зернистости алмаза. При использовании алмазных зерен более мелкой зернистости существенное увеличение режимов резания проблематично. Введение в шихту более крупных алмазных зерен экономически нецелесообразно, т.к. алмазные зерна крупнее 3000 мкм практически не синтезируются, а использование природных алмазных зерен таких размеров резко увеличит стоимость инструмента, несопоставимо с увеличением производительности резания. Количество алмазного порошка составляет 5,0-37,5 об.%. Содержание алмазного порошка менее 5,0 об.% не позволит увеличить режимы бурения из-за малого количества режущих кромок на поверхности материала. При содержании алмазного порошка более 37,5 об.% существенно снижается количество связующего - поликристаллического кубического нитрида бора, что приведет к возможности контакта алмазных зерен друг с другом, и, соответственно, к снижению надежности удержания алмазных зерен в связке. Кроме того, матрица из кубического нитрида бора, составляющая основу материала в достаточном объеме, имея более высокую термостойкость, будет надежно предохранять алмазные зерна от окисления кислородом воздуха.

В качестве порошков кубического нитрида бора могут быть использованы синтезированные порошки, а также порошки дробленых поликристаллических сверхтвердых материалов на основе кубического нитрида бора.

В качестве алмазных порошков кроме природных и синтетических алмазов могут быть использованы порошки дробленных композиционных или поликристаллических алмазных материалов (балласа, карбонадо др.).

Шихта может дополнительно содержать катализатор - растворитель, например диборид магния, нитрид алюминия и др. известные катализаторы, используемые при синтезе кубического нитрида бора. Введение катализаторов-растворителей позволит снизить режимы синтеза кубического нитрида бора. Кроме того можно вводить в шихту различные дополнительные материалы, например металлы или бориды, карбиды, оксиды нитриды металлов и др. Эти включения могут изменять характеристики получаемого материала в соответствии со специфическими требованиями.

Величину давления и нагрева шихты выбирают из условия проведения процесса синтеза в области термодинамической стабильности кубического нитрида бора и алмаза диаграмм состояния. Величина давления находится в диапазоне 50-80 кбар, температура - выше 1100°С. При таких режимах гексагональный нитрид бора перестраивается в кубическую решетку и остается стабильным до конца протекания процесса синтеза. Алмазы в этих условиях сохраняют свое состояние.

При исследовании полученных образцов с помощью оптического микроскопа была видна плотная мелкозернистая структура кубического нитрида бора с разнесенными по поверхности образца на достаточном расстоянии друг от друга крупными зернами алмаза, которые при работе буровой коронки выполняют роль отдельно стоящих режущих кромок, обеспечивающих высокую работоспособность поликристалла.

Таким образом, введение в материал, основу которого составляет поликристаллический кубический нитрид бора, крупных кристаллов алмаза позволяет существенно повысить работоспособность бурового инструмента, оснащенного режущими элементами из такого материала, и режимы бурения пород V-XII категорий буримости. Повышение режимов бурения обеспечивает повышение производительности бурения.

Применение поликристаллического материала из кубического нитрида бора, содержащего крупные алмазные зерна, не ограничивается буровыми коронками. Такой материал может быть использован и в других инструментах, таких как, например, в инструментах для правки шлифовальных кругов, для сверления и резки природных и искусственных строительных материалов и т.п.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ получения поликристаллического материала на основе кубического нитрида бора, содержащего алмазы, воздействием на шихту, включающую гексагональный и кубический нитрид бора и порошки алмаза, давлением при температуре в области термодинамической стабильности кубического нитрида бора и алмаза диаграмм состояния, отличающийся тем, что алмазные порошки берут с размером зерен 200-3000 мкм в количестве 5,0-37,5 об.%.

2. Способ по п.1, отличающийся тем, что гексагональный нитрид бора берут размером 1-3 мкм.

3. Способ по п.1, отличающийся тем, что кубический нитрид бора берут размером 1-5 мкм.


Скачать патент РФ Официальная публикация
патента РФ № 2484888

patent-2484888.pdf
Патентный поиск по классам МПК-8:

Класс B01J3/06 способы, использующие сверхвысокое давление, например для образования алмазов; устройства для этой цели, например матрицы

Класс B24D3/00 Физические свойства абразивных тел или листов, например абразивных поверхностей особого рода; абразивные тела или листы, отличающиеся по своей структуре

Патенты РФ в классе B24D3/00:
абразивное изделие, имеющее линию пониженного сопротивления -  патент 2528299 (10.09.2014)
способ изготовления высокопористого абразивного инструмента -  патент 2527052 (27.08.2014)
композиция для связанного полировального инструмента -  патент 2526982 (27.08.2014)
способ приготовления твердосплавной шихты с упрочняющими частицами наноразмера -  патент 2525192 (10.08.2014)
способ изготовления абразивного инструмента -  патент 2523863 (27.07.2014)
способ приготовления абразивной массы для высокопористого инструмента -  патент 2523859 (27.07.2014)
абразивные плавленые зерна -  патент 2523197 (20.07.2014)
фасонные абразивные частицы с наклонной боковой стенкой -  патент 2522355 (10.07.2014)
абразивная масса для абразивных паст и инструментов и способ ее изготовления -  патент 2521769 (10.07.2014)
абразивное изделие (варианты) и способ его формирования -  патент 2520288 (20.06.2014)

Класс C04B35/5831 на основе кубического нитрида бора

Патенты РФ в классе C04B35/5831:
способ получения композиционных материалов из кубического нитрида бора -  патент 2493135 (20.09.2013)
способ изготовления поликристаллического кубического нитрида бора с мелкозернистой структурой -  патент 2450855 (20.05.2012)
способ получения поликристаллического материала на основе кубического нитрида бора -  патент 2449831 (10.05.2012)
способ получения поликристаллического кубического нитрида бора -  патент 2412111 (20.02.2011)
способ получения композиционного материала на основе порошков алмаза и/или кубического нитрида бора -  патент 2393135 (27.06.2010)
способ получения композиционных материалов на основе сверхтвердых частиц для изготовления режущих элементов -  патент 2296727 (10.04.2007)
способ изготовления керамического материала -  патент 2223929 (20.02.2004)
спеченная заготовка из нитрида бора с кубической решеткой (варианты) -  патент 2220929 (10.01.2004)
способ получения сверхтвердого композиционного материала на основе кубического нитрида бора для режущих инструментов -  патент 2185930 (27.07.2002)
способ получения сверхтвердого композиционного материала на основе кубического нитрида бора для режущих инструментов и композиционный материал -  патент 2147972 (27.04.2000)

Класс C30B28/00 Получение гомогенного поликристаллического материала с определенной структурой

Патенты РФ в классе C30B28/00:
способ синтеза поликристаллов полупроводникового соединения групп ii-vi -  патент 2526382 (20.08.2014)
поликристаллический алмаз -  патент 2522028 (10.07.2014)
способ получения оптических поликристаллических материалов на основе селенида цинка -  патент 2516557 (20.05.2014)
аппарат для получения и способ получения поликристаллического кремния -  патент 2495164 (10.10.2013)
способ получения поликристаллического оптического селенида цинка -  патент 2490376 (20.08.2013)
лазерная фторидная нанокерамика и способ ее получения -  патент 2484187 (10.06.2013)
способы получения сложного гидросульфатфосфата цезия состава cs5(hso4)2(h2po4)3 -  патент 2481427 (10.05.2013)
способ получения поликристаллического кремния -  патент 2475570 (20.02.2013)
способ получения поликристаллического кремния -  патент 2475451 (20.02.2013)
бесцветный монокристаллический алмаз и способ его получения -  патент 2473720 (27.01.2013)

Класс C30B29/38 нитриды

Патенты РФ в классе C30B29/38:
монокристалл нитрида, способ его изготовления и используемая в нем подложка -  патент 2485221 (20.06.2013)
устройство для производства монокристаллического нитрида алюминия, способ производства монокристаллического нитрида алюминия и монокристаллический нитрид алюминия -  патент 2485219 (20.06.2013)
способ выращивания монокристаллов нитрида галлия -  патент 2477766 (20.03.2013)
способ динамического синтеза ультрадисперсного кристаллического ковалентного нитрида углерода c3n4 и устройство для его осуществления -  патент 2475449 (20.02.2013)
способ выращивания монокристалла aln и устройство для его реализации -  патент 2468128 (27.11.2012)
способ получения кристаллов gan или algan -  патент 2446236 (27.03.2012)
способ получения микрокристаллов нитрида алюминия -  патент 2437968 (27.12.2011)
способ получения монокристалла нитрида тугоплавкого металла и изделия из него, получаемого этим способом -  патент 2431002 (10.10.2011)
способ выращивания слоя нитрида галлия и способ получения нитридного полупроводникового устройства -  патент 2414549 (20.03.2011)
способ получения поликристаллического кубического нитрида бора -  патент 2412111 (20.02.2011)

Класс C30B29/04 алмаз

Патенты РФ в классе C30B29/04:
поликристаллический алмаз -  патент 2522028 (10.07.2014)
монокристаллический алмазный материал -  патент 2519104 (10.06.2014)
способ получения алмазоподобных покрытий комбинированным лазерным воздействием -  патент 2516632 (20.05.2014)
синтетический cvd алмаз -  патент 2516574 (20.05.2014)
способ изготовления фантазийно окрашенного оранжевого монокристаллического cvd-алмаза и полученный продукт -  патент 2497981 (10.11.2013)
способ избирательного дробления алмазов -  патент 2492138 (10.09.2013)
способ получения пластины комбинированного поликристаллического и монокристаллического алмаза -  патент 2489532 (10.08.2013)
способ получения алмазов с полупроводниковыми свойствами -  патент 2484189 (10.06.2013)
способ получения синтетических алмазов и установка для осуществления способа -  патент 2484016 (10.06.2013)
способ синтеза алмазов, алмазных поликристаллов -  патент 2476376 (27.02.2013)


Наверх