ПАТЕНТНЫЙ ПОИСК В РФ
НОВЫЕ ПАТЕНТЫ, ЗАЯВКИ НА ПАТЕНТ
БИБЛИОТЕКА ПАТЕНТОВ НА ИЗОБРЕТЕНИЯ

Твердый электролит с литий-ионной проводимостью

Классы МПК:H01M10/00 Вторичные элементы; их изготовление
Автор(ы):,
Патентообладатель(и):Учреждение Российской академии наук Институт высокотемпературной электрохимии Уральского отделения РАН (RU)
Приоритеты:
подача заявки:
22.11.2011
начало действия патента:
22.11.2011
публикация патента:

Изобретение относится к области электротехники, а именно к твердым электролитам с проводимостью по катионам лития. Технический результат заключается в снижении температуры и времени обработки литийсодержащего материала при достижении высокой ионной проводимости твердого электролита при комнатной температуре. Твердый электролит с литий-ионной проводимостью содержит цирконат лантана лития с добавкой катионов алюминия и при этом состав твердого электролита отвечает формуле Li8La3 Zr2-0.75xAlxO12.5, где х=0,07-0,2. 1 табл.

Изобретение относится к области электротехники, а именно к твердым электролитам с проводимостью по катионам лития, и может быть использовано в полностью твердофазных низко- и среднетемпературных литиевых и литий-ионных источниках тока и в ряде других электрохимических устройств.

Известен твердый электролит - цирконат лантана лития Li7La3Zr2O 12 (LLZ), устойчивый к металлическому литию и обладающий тетрагональной структурой. Керамика из данного твердого электролита имеет низкую электропроводность ~10-7 См/см при комнатной температуре (J.Awaka, N.Kijima, Н.Hayakawa and J.Akimoto, J. Solid State Chem. 182 (2009), p.2046) [1].

В кубической модификации LLZ проводимость керамики возрастает до 10-4 См/см при комнатной температуре, что позволяет использовать данный твердый электролит в химических источниках тока (R. Murugan, V. Thangadurai and W. Weppner, Angew. Chem. Int. Ed. 46 (2007), p.7778) [2]. Однако получение такой структуры связано с длительными выдержками литийсодержащего материала при высоких температурах: 36 ч при 1250°C. При этом процесс осложняется высокой летучестью оксида лития при температурах свыше 900°C.

Наиболее близким по составу к предлагаемому изобретению является твердый электролит, содержащий цирконат лантана лития с добавкой катионов алюминия и отвечающий общей формуле Li7La 3Zr2AlxO12+1,5x, x=0-0.8 (EP 2159867, публ. 2010 г.) [3]. Керамика, полученная из кубической модификации данного электролита, при содержании алюминия в интервале 0.3-0.5 мас.% имеет электропроводность в интервале 1.0·10 -5-1.6·10-4 См/см. Однако его получение также требует длительной обработки литийсодержащего материала при высоких температурах, а именно в течении 36 ч при 1000-1180°C.

Более того, получение указанных твердых электролитов [2, 3] путем длительной обработки литийсодержащего материала при столь высоких температурах, как 1250°C или 1000-1180°C, связано со значительными энергозатратами.

Задача настоящего изобретения состоит в упрощении технологии получения твердого электролита с литий-ионной проводимостью и снижении связанных с этим энергозатрат.

Поставленная задача решается тем, что твердый электролит с литий-ионной проводимостью содержит цирконат лантана лития с добавкой катионов алюминия, при этом состав твердого электролита отвечает формуле Li 8La3Zr2-0.75xAlxO 12.5, где x=0.07-0.2.

Заявляемый твердый электролит обладает тетрагональной структурой, и его получение не требует длительной выдержки литийсодержащих материалов при температурах свыше 900°C. Высокая ионная проводимость данного электролита достигается путем введения в цирконат лантана лития (LLZ) дополнительного оксида лития при одновременном замещении части катионов циркония на катионы алюминия. Введение указанных добавок способствует облегчению переноса катионов лития в разупорядоченной структуре LLZ. Добавочные количества лития и алюминия определены экспериментально, при этом установлено, что при введении запредельного количества алюминия литий-ионная проводимость снижается.

Новый технический результат, достигаемый заявленным изобретением, заключается в снижении температуры и времени обработки литийсодержащего материала при достижении высокой ионной проводимости твердого электролита при комнатной температуре.

Заявляемый твердый электролит получают цитрат-нитратным методом из прекурсоров Li2CO3, ZrO(NO3)2 , La2O3, Al(NO3)3 ·9H2O с последующей высокотемпературной обработкой при 900°C в течение 1 ч. В таблице приведены примеры составов твердого электролита заявленного и прототипа, а также значения электропроводности керамики, полученной из твердого электролита приведенных в таблице составов. Измерения электропроводности исследуемых образцов, изготовленных из обожженной керамической смеси, проводили в двухконтактной двухэлектродной ячейке методом электрохимического импеданса.

Полученные экспериментальные данные свидетельствуют о том, что керамический электролит Li 8La3Zr2-0.75xAlxO 12.5, где x=0.07-0.2, полученный при 900°C в течение 1 ч (составы 2, 3, 4), обладает тетрагональной структурой, имеет литий-ионную проводимость в интервале от 4.0·10-5 до 1.3·10-4 См/см при 23°C, сопоставимую с наилучшими показателями электропроводности электролита-прототипа Li7La3Zr2AlxO 12+1.5x при x=0.3-0.5. Данные таблицы подтверждают также, что электропроводность керамики, полученной из составов электролита, не отвечающего формуле Li8La3Zr2-0.75x AlxO12.5, где x=0.07-0.2 (составы 1, 5, 6), снижается.

По отношению к известным из уровня техники электролитам с литий-ионной проводимостью, электропроводность наилучшего из составов заявленного электролита (состав 3) на 3 порядка выше электропроводности электролита с тетрагональной структурой [1], сопоставима с проводимостью электролита кубической модификации [2] и с проводимостью лучшего из составов прототипа - твердого электролита Li7La3Zr2 Al0.4O12.6, равной 1,6·10-4 См/см.

Таким образом, заявленное изобретение позволяет снизить температуру и время обработки литийсодержащего материала, а также уровень энергозатрат при достижении высокой ионной проводимости твердого электролита при комнатной температуре.

Таблица
ТВЕРДЫЙ ЭЛЕКТРОЛИТ С ЛИТИЙ-ИОННОЙ ПРОВОДИМОСТЬЮ
Состав электролита по прототипуЭлектропроводность керамики при 23°C, См/см N п/пСоставы исследуемых электролитов заявленного изобретения Электропровод-

ность керамики при 23°C, См/см
Твердый электролит с литий-ионной проводимостью, патент № 2483398 Твердый электролит с литий-ионной проводимостью, патент № 2483398 1 Li8La3Zr1.97Al0.04 O12.5 6.9·10-6
Твердый электролит с литий-ионной проводимостью, патент № 2483398 Твердый электролит с литий-ионной проводимостью, патент № 2483398 2 Li8La3Zr1.95Al0.07 O12.5 4.0·10-5
Li7La3Zr2AlxO 12+1.5x 1,0·10-5-1,6·10-4 3Li8 La3Zr1.9Al0.13O12.5 1.3·10 -4
x=0.3-0.54 Li8La 3Zr1.85Al0.2O12.5 7.8·10-5
Твердый электролит с литий-ионной проводимостью, патент № 2483398 Твердый электролит с литий-ионной проводимостью, патент № 2483398 5 Li8La3Zr1.8Al0.27 O12.5 5.4·10-5
Твердый электролит с литий-ионной проводимостью, патент № 2483398 Твердый электролит с литий-ионной проводимостью, патент № 2483398 6 Li8La3Zr1.7Al0.4O 12.56.3·10 -5

ФОРМУЛА ИЗОБРЕТЕНИЯ

Твердый электролит с литий-ионной проводимостью, содержащий цирконат лантана лития с добавкой катионов алюминия, отличающийся тем, что состав твердого электролита отвечает формуле Li 8La3Zr2-0,75xAlxO 12,5, где х=0,07-0,2.


Скачать патент РФ Официальная публикация
патента РФ № 2483398

patent-2483398.pdf | 134 KB
Патентный поиск по классам МПК-8:

Класс H01M10/00 Вторичные элементы; их изготовление

Патенты РФ в классе H01M10/00:
биполярная батарея -  патент 2529547 (27.09.2014)
аккумуляторная батарея -  патент 2529499 (27.09.2014)
способ эксплуатации никель-водородной аккумуляторной батареи в автономной системе электропитания космического аппарата и автономная система электропитания для его реализации -  патент 2529011 (27.09.2014)
цепь нагрева аккумуляторной батареи -  патент 2528622 (20.09.2014)
способ эксплуатации никель-водородной аккумуляторной батареи в автономной системе электропитания космического аппарата и автономная система электропитания для его реализации -  патент 2528411 (20.09.2014)
способ восстановления никель-кадмиевых аккумуляторов переменным асимметричным током -  патент 2527937 (10.09.2014)
способ получения положительного электрода литий-ионного аккумулятора и литий-ионный аккумулятор -  патент 2526239 (20.08.2014)
способ обнаружения извлечения аккумулятора -  патент 2526028 (20.08.2014)
биполярный электрод, биполярная аккумуляторная батарея с его использованием и способ изготовления биполярного электрода -  патент 2524572 (27.07.2014)
устройство подзарядки аккумуляторных батарей гибридного автомобиля -  патент 2524352 (27.07.2014)


Наверх