Поиск патентов
ПАТЕНТНЫЙ ПОИСК В РФ

способ получения пористого костного биокомпозита

Классы МПК:A61L27/12 фосфорсодержащии материалы, например апатит
A61L27/24 коллаген
Автор(ы):, , , , ,
Патентообладатель(и):Горшенёв Владимир Николаевич (RU),
Телешев Андрей Терентьевич (RU)
Приоритеты:
подача заявки:
2012-05-21
публикация патента:

Изобретение относиться к медицине. Описан способ получения пористого коллаген-гидроксиапатитового биокомпозита, который включает синтез гидроксиапатита на гидрогелевой коллагеновой матрице и сшивку волокон коллагена, который ведут в гидродинамическом диспергаторе роторно-пульсационного типа в процессе последовательной загрузки компонентов, а также разлив в форму и лиофильную сушку готового биокомпозита. На первой стадии загружают дробленую обезжиренную свиную шкуру и подготовленную воду и обрабатывают при гидромодуле 4-5 в течение 25-35 мин и температуре не выше 81°C до получения гидрогеля коллагена, затем, не прерывая процесса, в диспергатор загружают порошок фосфата кальция моногидрата в количестве 4,5-5,0 М и обрабатывают в течение 8-12 мин при температуре не выше 71°C и в диспергатор дробно вводят 3,0-3,3 М гидроксида кальция, суспендированного в 1-2 л воды, и обрабатывают в течение 25-35 мин при температуре не выше 77°С. Сшивку волокон коллагена проводят при гидромодуле 20-25, температуре 55-56°C в течение 90-120 мин, затем полученную пульпу разливают в форму и подвергают лиофильной сушке при температуре коллектора -50°C. Технический результат состоит в получении дисперсии гидроксиапатита в коллагеновом гидрогеле с экспоненциальным распределением твердых фракций размером от менее 0,05 мкм до 1,0 мкм. 5 з.п. ф-лы, 4 пр.

Изобретение относится к медицине и биологии, а именно к технологии получения биокомпозитов, стимулирующих восстановление костной ткани, как при ее лечении, так и при протезировании дефектных участков.

Известно, что костная ткань - это природный композит, состоящий из органической и неорганической составляющих. Важнейшими органическими составляющими этой ткани являются вещества белковой природы. Белки образуют межклеточный матрикс, в котором выстраиваются апатитовые структуры [Poh CK, et al. The effect of VEGF functionalization of titanium on endothelial cells in vitro. Biomaterials. 2010 Mar; 31(7): 1578-85. Epub 2009 Dec 5]. Технология искусственной костной ткани активно совершенствуется, особенно в направлении синтеза наночастиц гидроксиапатита на коллагеновых волокнах [Litvinov S.D., Krasnov A.F., Bulanov S.I. Hydroxo-base implants for orthopaedics and stomatology // Archives of Pharmacology, Suppel.2 to vol. 358, N1, 1998. P.511].

Известен способ формирования костной ткани, когда пересадочный материал приготавливают путем перемешивания деминерализованных и стерилизованных костных частиц с костным морфогенетическим белком (US 4394370, Jefferies, 19.07.1983). Полученную коллагеновую губчатую смесь имплантируют в область пораженного участка кости. Однако полученный в этом случае материал не имеет достаточной степени структурной интегрированности компонентов, кроме того, а сам процесс является низкотехнологичным.

В патенте RU 2053733 C1, Ершов и др., 10.02.1996 описан другой способ формирования костной ткани. Коллагеновый матрикс помещают в жидкий раствор, содержащий ионы кальция, фосфата и гидроксида, а процесс осаждения гидроксоапатита на коллагене проводят под действием электрофореза. Для предотвращения закисления раствора, содержащего ионы кальция, в него добавляют гидроксид или карбонат кальция, что исключает растворение гидроксоапатита (RU 2174848 C1, Литвинов и др., 20.10.2001). Однако при пропускании электрического тока одновременно происходит электролиз раствора соли кальция, в результате которого образуются водород и кислота, что приводит к изменению pH. Вместе с ионами кальция ионы водорода диффундируют в коллаген и частично растворяют образующийся гидроксоапатит. Поэтому, несмотря на высокую степень структурной интегрированности компонентов в отдельных местах коллагена, не происходит равномерного образования солевого компонента во всем объеме имплантата. Кроме того, образуются побочные продукты, снижающие биологическую эффективность получаемого материала.

В патенте RU 2206341 C1, Ершов и др., 20.06.2003 описан способ формирования костного имплантата, включающий диспергирование коллагена в водном растворе, синтез гидроксиапатита путем осаждения его на коллагене в микрогетерогенной среде водного раствора ионов кальция, фосфата и гидроксидов при потенциометрическом контроле pH и реагирующих ионов, при степени диспергирования 1-100 мкм -1 композита коллагена и осажденного на нем гидроксиапатита, после чего полученный композит центрифугируют, сушат при температуре не выше 45°C и стерилизуют. До введения ионов кальция, фосфата и гидроксидов в водный раствор диспергированного коллагена могут вводиться лекарственные вещества (антибиотики, и/или фактор роста, и/или иммуноподавляющие препараты, и/или антисептики). Однако этот способ многостадиен и сложен.

В патенте US 4623553, Ries, et al., 18.11.1986 рассматриваются особенности изготовления костной композиции с использованием очищенного водного раствора коллагена, в котором в качестве сшивающего агента использован формальдегид или глутаровый альдегид, в который затем добавляют зерна гидроксиапатита размером 50-300 мкм. В качестве источника коллагеновых волокон могла быть использована свиная шкура. Известно, что механическая агитация в процессе твердения композита, уже находящегося в форме, например, посредством ультразвуковых колебаний позволяет ориентировать волокна коллагена определенным образом, как бы ощетинивая поверхность коллагена (US 8080060, Govil, et al., 20.12.2011), вместе с тем, такая агитация не используется в процессе синтеза самого композита.

Наиболее близким по техническому существу является способ получения сшитого пористого коллаген-аппатита, включающий стадии гелеобразования и сублимационной сушки полученного биокомпозита (US 7153938, Kikuchi, et al., 26.12.2006 - прототип). Коллаген может быть получен от животных. Водный раствор коллагена в фосфорной кислоте может содержать коллаген в концентрации от 0,1 до 1% по массе. Добавляют водный раствор соли кальция и смесь нагревают до 40°C. При перемешивании скорость от 1 до 400 оборотов в минуту, например, около 200 об -1. После завершения процесса водная апатит-коллагеновая суспензия подвергается сублимационной сушке в вакууме при т-ре -10°C или ниже. Однако этот способ также включает ряд стадий, использует несколько разнородных по выполняемым функциям приспособлений и технологически сложен, кроме того, скорость перемешивания не обеспечивает необходимого равномерного распределения апатита в коллагеновой матрице.

Патентуемое изобретение направлено на решение задачи создания эффективного промышленного способа получения коллаген-гидроксиапатитового костного биокомпозита, позволяющего значительно сократить продолжительность процесса, упростить его технологию, снизить энергозатраты и получить при этом целевой продукт высокого качества.

Патентуемый способ получения пористого коллаген-гидроксиапатитового биокомпозита включает синтез гидроксиапатита на гидрогелевой коллагеновой матрице, сшивку волокон коллагена, разлив в форму и лиофильную сушку готового биокомпозита.

Отличие способа состоит в том, что синтез гидроксиапатита на гидрогелевой коллагеновой матрице и сшивку волокон коллагена ведут в гидродинамическом диспергаторе роторно-пульсационного типа в процессе последовательной загрузки компонентов. При этом на первой стадии загружают дробленую обезжиренную свиную шкуру и подготовленную воду и обрабатывают при гидромодуле 4-5 в течение 25-35 мин и температуре не выше 81°C до получения гидрогеля коллагена. На второй стадии, не прерывая процесса, в диспергатор загружают порошок фосфата кальция моногидрата в количестве 4,5-5,0 М и обрабатывают в течение 8-12 мин при температуре не выше 71°C. На третьей стадии в диспергатор дробно вводят 3,0-3,3 М гидроксида кальция, суспендированного в 1-2 л воды, и обрабатывают в течение 25-35 мин при температуре не выше 77°C. На четвертой стадии проводят сшивку волокон коллагена при гидромодуле 20-25, температуре 55-56°C в течение 90-120 мин, затем полученную пульпу разливают в форму и подвергают лиофильной сушке при температуре коллектора -50°C.

Способ может характеризоваться тем, что число оборотов ротора диспергатора на втором этапе составляет 0,8-0,85 от рабочего числа оборотов остальных этапов.

Способ может характеризоваться и тем, что свиную шкуру перед загрузкой бланшируют при температуре 38-40°C в течение 5-10 мин.

Способ может характеризоваться также тем, что в процессе подготовки воды ее подвергают микрофильтрации через фильтры с размером пор 20-30 мкм при температуре 16-20°C и давлении 0,1-0,2 МПа, отстаивают в присутствии ионов серебра в течение не менее двух часов до дозы серебра 0,03-0,05 мг/дм3 и стерилизуют на ультрафильтрационных элементах с размером пор 0,01-0,07 мкм.

Способ может характеризоваться также и тем, что по завершении третьей стадии дополнительно загружают антиоксидант природного происхождения на основе пентагидроксифлавона-дигидрокверцетина в количестве 0,05-0,10% в пересчете на сухую массу допируемого биокомпозита.

Способ может характеризоваться, кроме того, тем, что по завершении третьей стадии дополнительно загружают порошок сухой ламинарии с размером частиц до 5 мкм в количестве 0,05-0,10% в пересчете на сухую массу допируемого биокомпозита.

Технический результат состоит в получении дисперсии гидроксиапатита в коллагеновом гидрогеле с экспоненциальным распределением твердых фракций размером от менее 0,05 мкм до 1,0 мкм.

Особенность патентуемого способа состоит в использовании в качестве реактора аппарата роторно-пульсационного типа (РПА). Это устройство сочетает в себе принципы работы диспергатора, гомогенизатора и центробежного насоса. Благодаря конструктивным особенностям установки РПА жидкотекучие среды в зоне обработки подвергаются комплексному механоакустическому и тепловому воздействию за счет больших градиентов скоростей, вихреобразования и высокочастотных пульсаций в ультразвуковом диапазоне частот. Для задания заданных температурных воздействий на пульпу устройство содержит контур регулирования и холодильник для отвода тепла. Последовательность загрузки компонентов, их состав и время обработки лежат в рекомендованных интервалах.

Важное значение приобретает выбор источника коллагена. Для этих целей рекомендовано использовать дробленую обезжиренную свиную шкуру, которую предварительно бланшируют в воде при температуре 38-40°C в течение 5-10 мин. Воду для использования в процессе подвергают микрофильтрации через фильтры с размером пор 20-30 мкм при температуре 16-20°C и давлении 0,1-0,2 МПа. Далее воду отстаивают в присутствии ионов серебра в течение не менее двух часов до дозы серебра 0,03-0,05 мг/дм3, а затем стерилизуют ультрафильтрацией на элементах с размером пор 0,01-0,07 мкм.

На заключительной стадии загрузки в РПА вводят пентагидроксифлавон-дигидрокверцетин, известный как «Таксифолин» (Taxifolin), который относится к антиоксидантам натурального происхождения, или биофлавоноидам. Он обладает мощным противовоспалительным и противоаллергенным свойствами, укрепляет и восстанавливает соединительную ткань, способствует снижению уровня холестерина, усиливает действие многих полезных веществ (витамина С и витамина Е); укрепляет сосуды и капилляры, улучшает микроциркуляцию крови, препятствует образованию тромбов. Добавление порошка сухой ламинарии с размером частиц до 5 мкм, как источника альгинатов, обеспечивает улучшение процессов регенерации тканей, обладает кровеостанавливающими свойствами, создает мощный барьер для раневой инфекции.

Пример 1. В РПА при рабочем числе оборотов 3000 об/мин загружают предварительно бланшированную при температуре 40°C в течение 10 мин дробленую обезжиренную свиную шкуру и подготовленную воду. Продукт обрабатывают при гидромодуле 4,5 в течение 30 мин, при этом контролируют температуру продукта (не выше 81°C).

В полученный гидрогель коллагена, не прерывая процесса в РПА, загружают порошок фосфата кальция моногидрата CaHPO 4·H2O в количестве 4,5 М и обрабатывают при температуре 61°C в течение 10 мин при пониженном числе оборотов (2500 об/мин). На третьей стадии в РПА дробно вводят 3,0 М гидроксида кальция Ca(OH)2·2Н2 О, суспендированного в 1 л воды, и обрабатывают в течение 30 мин при числе оборотов 3000 об/мин и температуре не выше 77°C.

На последней четвертой стадии в РПА при рабочем числе оборотов (3000 об/мин) проводят сшивку волокон коллагена при гидромодуле 20, температуре 55-56°C в течение 90 мин. Затем полученный гелеобразный продукт разливают в заданные формы и подвергают лиофильной сушке при температуре коллектора -50°C в течение 32 ч.

Согласно данным анализа зольных элементов, проведенного на лазерном масс-спектрометре «ЭМАЛ-2», атомное соотношение фосфор-кальций составляет 0,6:1,0, что соответствует брутто-формуле Ca10H2O26P 6.

Параметры пористой структуры определены из изотермы адсорбции паров азота при температуре -196°C на автоматической вакуумной адсорбционной установке «GRAVIMAT-4303». SБЭТ составляет 79 м2/г.

Размеры частиц твердых фракций определялись на фотоденсиметре ФСХ-5. Полидисперсность характеризуется интервалом 0,5-10 мкм, с вероятнейшим размером частиц 0,5 мкм.

Пример 2. Режимы и загрузка обезжиренной свиной шкуры соответствуют приведенным для примера 1. Загружают 5,0М СаНРО4·Н2О и суспензию 3,3 М Ca(ОН)2·2Н2О в 2 л воды.

Согласно данным анализа зольных элементов атомное соотношение фосфор-кальций составляет 0,6:1,0, что соответствует брутто-формуле Са10Н2О26Р 6. Полидисперсность характеризуется интервалом 0,5-10 мкм, с вероятнейшим размером частиц 0,8 мкм. Параметр пористой структуры SБЭТ составляет 78 м2/г.

Пример 3. Режимы и составы соответствуют приведенным для примера 1.

По завершении третьей стадии в РПА с введением 3,0М гидроксида кальция Ca(ОН)2·2H2 O, суспендированного в 1 л воды, и обработки в течение 30 мин при числе оборотов 3000 об/мин и температуре 75°C в полученную пульпу вводят пентагидроксифлавон-дигидрокверцетин в количестве 0,05-0,10 г на 100 г лиофилизированного биокомпозита.

Атомное соотношение фосфор-кальций составляет 0,6:1,0, что соответствует брутто-формуле Са10Н2О26Р 6. Параметр пористой структуры SБЭТ составляет 79 м2/г. Полидисперсность характеризуется интервалом 0,5-10 мкм, с вероятнейшим размером частиц 0,5 мкм.

Пример 4. Режимы и составы соответствуют приведенным в примере 1.

По завершении третьей стадии в полученную пульпу вводят порошок сухой ламинарии с размером частиц до 5 мкм в количестве 0,05-0,10% в пересчете на сухую массу допируемого биокомпозита. Атомное соотношение фосфор-кальций составляет 0,6:1,0, что соответствует брутто-формуле Са10Н2О26Р 6. Параметр пористой структуры SБЭТ составляет 77 м2/г.

Размеры частиц твердых фракций регистрировались на фотоденсиметре ФСХ-5. Полидисперсность характеризуется интервалом 0,5-10 мкм, с вероятнейшим размером частиц 0,5 мкм.

Способ может быть осуществлен с использованием любого промышленного диспергатора циркуляционного типа, например, роторно-пульсационного аппарата РПА «Дельта-ротор» с приводом (Установка РПА (роторно-пульсационный аппарат) 1111.731.00.100, ТУ513*-002-43794424-2008, производство ООО НПП «Авиатехника» г. Казань). Рабочая частота вращения ротора составляет 3000 об/мин; максимальная производительность (по воде) - 20 м3/ч.

Патентуемый способ позволяет получать коллаген-гидроксиапатитовые биокомпозиты высокого качества, существенно упростить технологию процесса, сделать его менее затратным, так как процесс в роторно-пульсационном аппарате осуществляется в условиях саморазогрева реакционной среды и не требует подвода тепла извне.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ получения пористого коллаген-гидроксиапатитового биокомпозита, включающий синтез гидроксиапатита на гидрогелевой коллагеновой матрице, сшивку волокон коллагена, разлив в форму и лиофильную сушку готового биокомпозита,

отличающийся тем, что синтез гидроксиапатита на гидрогелевой коллагеновой матрице и сшивку волокон коллагена ведут в гидродинамическом диспергаторе роторно-пульсационного типа в процессе последовательной загрузки компонентов, при этом

на первой стадии загружают дробленую обезжиренную свиную шкуру и подготовленную воду и обрабатывают при гидромодуле 4-5 в течение 25-35 мин и температуре не выше 81°C до получения гидрогеля коллагена,

на второй стадии, не прерывая процесса, в диспергатор загружают порошок фосфата кальция моногидрата в количестве 4,5-5,0 М и обрабатывают в течение 8-12 мин при температуре не выше 71°C,

на третьей стадии в диспергатор дробно вводят 3,0-3,3 М гидроксида кальция, суспендированного в 1-2 л воды и обрабатывают в течение 25-35 мин при температуре не выше 77°C,

на четвертой стадии проводят сшивку волокон коллагена при гидромодуле 20-25, температуре 55-56°C в течение 90-120 мин, затем

полученную пульпу разливают в форму и подвергают лиофильной сушке при температуре коллектора минус 50°C.

2. Способ по п.1, отличающийся тем, что число оборотов ротора диспергатора на втором этапе составляет 0,8-0,85 от рабочего числа оборотов остальных этапов.

3. Способ по п.1, отличающийся тем, что свиную шкуру перед загрузкой бланшируют при температуре 38-40°C в течение 5-10 мин.

4. Способ по п.1, отличающийся тем, что в процессе подготовки воды ее подвергают микрофильтрации через фильтры с размером пор 20-30 мкм при температуре 16-20°C и давлении 0,1-0,2 МПа, отстаивают в присутствии ионов серебра в течение не менее двух часов до дозы серебра 0,03-0,05 мг/дм 3 и стерилизуют на ультрафильтрационных элементах с размером пор 0,01-0,07 мкм.

5. Способ по п.1, отличающийся тем, что по завершении третьей стадии дополнительно загружают антиоксидант природного происхождения на основе пентагидроксифлавона-дигидрокверцетина в количестве 0,05-0,10% в пересчете на сухую массу допируемого биокомпозита.

6. Способ по п.1, отличающийся тем, что по завершении третьей стадии дополнительно загружают порошок сухой ламинарии с размером частиц до 5 мкм в количестве 0,05-0,10% в пересчете на сухую массу допируемого биокомпозита.


Скачать патент РФ Официальная публикация
патента РФ № 2482880

patent-2482880.pdf
Патентный поиск по классам МПК-8:

Класс A61L27/12 фосфорсодержащии материалы, например апатит

Патенты РФ в классе A61L27/12:
материал заменителя костной ткани -  патент 2529802 (27.09.2014)
способ получения карбонатгидроксилапатита из модельного раствора синовиальной жидкости человека -  патент 2526191 (20.08.2014)
способ получения шихты для композиционного материала на основе карбоната кальция и гидроксиапатита и/или карбонатгидроксиапатита для восстановления костной ткани при реконструктивно-пластических операциях -  патент 2523453 (20.07.2014)
способ изготовления внутрикостных имплантатов с антимикробным эффектом -  патент 2512714 (10.04.2014)
отверждаемый биокомпозиционный материал для замещения костных дефектов -  патент 2508131 (27.02.2014)
остеогенный биорезорбируемый материал для замещения костных дефектов и способ его получения -  патент 2504405 (20.01.2014)
биоматериалы на основе фосфата кальция -  патент 2501571 (20.12.2013)
способ получения нанокристаллического кремнийзамещенного гидроксиапатита -  патент 2500840 (10.12.2013)
способ получения канафита -  патент 2499767 (27.11.2013)
пористые микросферы на основе биофосфатов кальция и магния с регулируемым размером частиц для регенерации костной ткани -  патент 2497548 (10.11.2013)

Класс A61L27/24 коллаген

Патенты РФ в классе A61L27/24:
комбинированный костный аллотрансплантат и способ его получения -  патент 2524618 (27.07.2014)
биокомпозиты и способы их получения -  патент 2500432 (10.12.2013)
искусственная твердая мозговая оболочка и способ ее производства -  патент 2491961 (10.09.2013)
биоинженерный коллагеновый конструкт, модифицированный кишечный коллагеновый слой, переработанный тканевый матрикс и способ восстановления или замещения поврежденной ткани -  патент 2481114 (10.05.2013)
система in-situ для внутриартикулярной регенерации хрящевой и костной тканей -  патент 2451527 (27.05.2012)
тонкопленочная многоячеистая структура, изготовленная из коллагена, элемент для регенерации ткани, содержащий ее, и способ ее получения -  патент 2404819 (27.11.2010)
мембрана для использования при направленной регенерации тканей -  патент 2367475 (20.09.2009)
способ получения коллагеновых имплантатов -  патент 2360690 (10.07.2009)
биорассасываемая коллагеновая матрица, способ ее получения и применение -  патент 2353397 (27.04.2009)
способ получения биоматериалов из костной ткани и полученный этим способом материал для остеопластики и тканевой инженерии -  патент 2342162 (27.12.2008)

Наверх