Поиск патентов
ПАТЕНТНЫЙ ПОИСК В РФ

способ комбинированного упрочнения поверхностей деталей

Классы МПК:C23C4/18 последующая обработка
B24B39/06 для обработки плоских поверхностей
B23H9/00 Обработка специальных металлических объектов или для получения специального эффекта или результата на металлических объектах
Автор(ы):, , , , ,
Патентообладатель(и):Общество с ограниченной ответственностью "Доступная робототехника" (RU)
Приоритеты:
подача заявки:
2011-10-11
публикация патента:

Изобретение относится к области нанесения покрытий, а именно к способам комбинированного упрочнения, и может быть использовано в различных областях машиностроения и ремонтного производства для упрочнения и восстановления поверхностей деталей. Технический результат - повышение плотности порошкового покрытия, его адгезионной и когезионной прочности для широкого диапазона толщин покрытий. Способ включает формирование на поверхности детали путем плазменного напыления покрытия и его последующую электромеханическую обработку с использованием смазочно-охлаждающей жидкости. При этом формирование покрытия осуществляют послойно до необходимой суммарной толщины с толщиной каждого слоя, выбираемой из условия: hсл<hкр, где hсл - толщина слоя покрытия, hкр - толщина слоя, при котором в процессе последующей электромеханической обработки происходит отслаивание или растрескивание покрытия. После электромеханической обработки покрытие дополнительно обрабатывают струей воды высокого давления 9-10 МПа. 2 ил., 1 табл., 1 пр.

Рисунки к патенту РФ 2480533

способ комбинированного упрочнения поверхностей деталей, патент № 2480533 способ комбинированного упрочнения поверхностей деталей, патент № 2480533

Изобретение относится к области создания покрытий деталей машин и может быть использовано в различных областях машиностроения и ремонтного производства для упрочнения и восстановления поверхностей деталей с целью повышения плотности, прочности и износостойкости покрытий, нанесенных плазменным напылением.

Современной проблемой машиностроения является увеличение износостойкости деталей и узлов трения. Перспективным направлением ее решения является нанесение покрытий плазменным напылением. Однако покрытия, созданные плазменным напылением, имеют низкую прочность по сравнению с прочностью напыляемого материала, что составляет проблему надежности данных покрытий.

Известен способ гибридного процесса напыления-наплавки покрытий (Соснин Н.А. и др. Плазменные технологии. Руководство для инженеров. СПб.: Изд-во Политехн., ун-та, 2008, с.196-197), позволяющий повысить качество покрытий по сравнению с плазменным напылением за счет проплавления покрытия при меньшем нагреве детали по сравнению с плазменной наплавкой. Недостатком способа является наличие пористости, остаточных напряжений покрытия, а также необходимость припуска покрытия и чистовой операции для его снятия.

Известен способ деформационного упрочнения изделий с наплавленными покрытиями (Влияние последующей деформационной обработки на перераспределение напряжений в наплавленных валах. / В.И.Махненко и др. Автоматическая сварка, 2001, № 7, с.3-6). Недостатком способа является невозможность существенного увеличения плотности покрытий вследствие затруднения выполнения пластической деформации и невозможности повышения адгезии на границе раздела покрытия с подложкой.

Известен способ термомеханического упрочнения газотермических покрытий (Яковлев К.А. Разработка процесса термомеханического упрочнения поверхностей с газотермическими покрытиями. Автореферат к.т.н. 1998). Недостатком способа является невозможность повышения адгезии на границе раздела покрытия с поверхностью детали.

Наиболее близким по технической сущности является способ комбинированного упрочнения поверхностей деталей (патент РФ № 2338005, кл. С23С 4/18, В23Н 9/00), при котором на поверхность изделия плазменным напылением наносят покрытие, а затем покрытие подвергают пластическому деформированию с одновременным пропусканием электрического тока через зону контакта инструмента с покрытием. Данный способ позволяет его использовать для ограниченных по величине толщин покрытий порядка 0,2-0,4 мм, при превышении которых покрытие вследствие наличия в нем высоких остаточных напряжений и хрупкости может растрескиваться и отслаиваться. Для покрытий толщиной более 0,2-0,4 мм данный способ является более трудоемким и требующим дополнительных затрат энергии, так как осуществляется путем кратного повторения двух последовательных операций напыления, а затем упрочнения.

Таким образом, известные способы упрочнения покрытий пластическим деформированием имеют недостатки, связанные с малым увеличением плотности плазменного покрытия и его прочности, или имеют ограничение использования по величине толщин упрочняемых покрытий и повышенными энергозатратами.

В этой связи важнейшей задачей является создание нового ресурсосберегающего способа упрочнения плазменных покрытий.

Техническим результатом является повышение плотности порошкового покрытия, его адгезионной и когезионной прочности, пригодного для широкого диапазона толщин покрытий.

Технический результат достигается тем, что в способе комбинированного упрочнения поверхностей деталей, включающем формирование на поверхности детали путем плазменного напыления покрытия и его последующую электромеханическую обработку с использованием смазочно-охлаждающей жидкости, согласно изобретению нанесение и электромеханическую обработку покрытия осуществляют послойно до необходимой суммарной толщины с толщиной каждого слоя, выбираемой из условия: h сл<hкр, где hсл - толщина слоя покрытия, hкр - значение толщины слоя, при котором в процессе его электромеханической обработки происходит отслаивание или растрескивание покрытия, а после электромеханической обработки покрытие дополнительно обрабатывают струей воды высокого давления 9-10 МПа.

На фиг.1 показана схема комбинированного процесса плазменного напыления покрытия с его одновременной электромеханической обработкой на примере цилиндрической детали. На фиг.2 представлена схема напыленных и упрочненных поверхностных слоев.

Предлагаемый способ комбинированного упрочнения поверхностей деталей реализуется плазменным напылением покрытия 1 на деталь 2 с помощью плазменной струи 3 плазмотрона 4 с одновременной электромеханической обработкой напыляемого покрытия 1 с помощью ролика 5, обкатывающего покрытие с прижимным усилием F. В результате подвода тепла к покрытию при его напылении от плазменной струи и выделения джоулева тепла в зоне контакта ролика с покрытием происходит нагрев покрытия в этой зоне и последующий быстрый теплоотвод в деталь 2, в том числе и за счет охлаждения струей 6 смазочно-охлаждающей жидкости 7. При этом за счет действия деформирующей силы происходит высокотемпературная пластическая деформация покрытия, в результате которой заполняются поры покрытия, увеличивается его плотность и прочность. Нагрев детали плазменной струей 3 позволяет уменьшить энергозатраты электромеханической обработки покрытия и снижает вероятность хрупкого разрушения покрытия за счет того, что покрытие перед тепловым ударом и деформацией от ролика 5 имеет более высокую температуру и более пластично. Процесс осуществляется послойно с толщиной каждого слоя меньше критического значения, при котором остаточные напряжения приводят к растрескиванию и отслаиванию покрытия до нанесения необходимой суммарной толщины покрытия. Для смыва остатков смазочно-охлаждающей жидкости от струи 6 после зоны электромеханического воздействия на покрытие поверхность обрабатывается струей воды высокого давления 8 от форсунки 9.

При прохождении электрического тока через первый слой покрытия образуются два источника тепла. Первый - в зоне контакта деформирующего инструмента 5 с покрытием 1, который нагревает компоненты покрытия и вследствие этого увеличивает их пластические свойства, обеспечивает пластическую деформацию до состояния заполнения пор в покрытии и тем самым ведет к увеличению плотности и когезионной прочности покрытия. Второй тепловой источник образуется на границе 10 покрытия 1 и детали 2 вследствие высокого электрического сопротивления в данной зоне и обеспечивает условия высокой адгезионной прочности покрытия.

При нанесении второго и последующих слоев добавляются границы между слоями 11, представляющие собой дополнительные электрические сопротивления и, соответственно, источники тепла, обеспечивающие более благоприятные условия разрушения окислов в границах 11 и высокой прочности соединения слоев между собой.

Величина деформирующего усилия F для первого слоя покрытия может быть определена из условия обеспечения пластической деформации на глубину, равную толщине этого слоя покрытия для достижения максимальной плотности слоя покрытия и его когезионной прочности так же, как в прототипе (формула (1) патента № 2338005):

способ комбинированного упрочнения поверхностей деталей, патент № 2480533

где p - контактное давление, определяемое из условия протекания пластической деформации на глубину, равную толщине нанесенного порошкового покрытия:

способ комбинированного упрочнения поверхностей деталей, патент № 2480533

где Нµ покр - микротвердость порошкового покрытия, МПа; Ak - площадь контакта инструмента с обрабатываемой поверхностью порошкового покрытия:

где способ комбинированного упрочнения поверхностей деталей, патент № 2480533 hпокр=hпокр·(1-способ комбинированного упрочнения поверхностей деталей, патент № 2480533 ) - изменение толщины порошкового покрытия в результате пластической деформации; R, r - радиусы рабочего профиля деформирующего инструмента; способ комбинированного упрочнения поверхностей деталей, патент № 2480533 - радиус кривизны обрабатываемой поверхности порошкового покрытия; способ комбинированного упрочнения поверхностей деталей, патент № 2480533 - пористость порошкового покрытия.

Температуру нагрева на границе первого слоя покрытия 1 с поверхностью детали 2 так же, как и для прототипа, обеспечивают в интервале 900-1200°С для формирования благоприятных условий взаимной диффузии элементов покрытия и предотвращения повышенной зернистости структуры, что ведет к увеличению прочности покрытия. Температуру обеспечивают необходимой величиной силы электрического тока J, пропускаемого через зону контакта инструмента с покрытием, пропорционального плотности тока i и площади Ак контакта инструмента с обрабатываемой поверхностью покрытия. Температуру на границах между слоями покрытия также обеспечивают в интервале температур 900-1200°С. Для этого с момента времени наступления нанесения второго и последующих слоев покрытия плотность электрического тока ступенчато увеличивают пропорционально суммарному электрическому сопротивлению между роликом 5 и металлом детали 2. При этом нагрев детали плазменной струей 3 позволяет уменьшить энергозатраты электромеханической обработки покрытия и снижает вероятность хрупкого разрушения покрытия за счет того, что покрытие перед тепловым ударом и деформацией от ролика 5 имеет более высокую температуру и более пластично в сравнении со способом у прототипа.

Реализация предложенного способа осуществляется по следующим этапам.

Определяются исходные толщина h, микротвердость Нµ и пористость способ комбинированного упрочнения поверхностей деталей, патент № 2480533 первого слоя покрытия. Толщина слоя определяется из условия отсутствия его растрескивания и отслаивания.

Определяют величину изменения толщины способ комбинированного упрочнения поверхностей деталей, патент № 2480533 h(h,способ комбинированного упрочнения поверхностей деталей, патент № 2480533 ) покрытия 1 в результате пластической деформации, обеспечивающей заполнение пор.

Рассчитывают площадь контакта Ак(способ комбинированного упрочнения поверхностей деталей, патент № 2480533 h) инструмента (ролика из токопроводящего материала) с поверхностью покрытия (например, по формуле в прототипе).

Определяют величину деформирующего усилия F произведением площади контакта Ак на контактное давление Р(H µ), обеспечивающее протекание пластической деформации на глубину, равную толщине слоя покрытия.

Устанавливают необходимую величину плотности электрического тока i из условия достижения температуры 900-1200°С на границе 10 раздела поверхности детали с покрытием 1 и устанавливают электрический ток I=i·Aк.

Аналогично рассчитывают параметры для комбинированного нанесения-упрочнения второго и последующих слоев.

На поверхность изделия плазменным напылением послойно наносят покрытие 1 при одновременной электромеханической обработке с рассчитанными режимными параметрами, ступенчато изменяющимися при нанесении и упрочнении каждого последующего слоя. При этом осуществляется высокотемпературная пластическая деформация покрытия, обеспечивающая высокую плотность и прочность покрытия толщиной 1,0 и более миллиметров. Кроме того, нагрев детали плазменной струей 3 позволяет уменьшить энергозатраты электромеханической обработки покрытия и снизить вероятность хрупкого разрушения покрытия за счет того, что покрытие перед тепловым ударом и деформацией от ролика 5 имеет необходимую высокую температуру и достаточно пластично.

Пример: по предложенному способу осуществляли обработку партии цилиндрических образцов из стали 45 ГОСТ 1050-74, твердостью НВ 225-240, шероховатостью Rz 20, диаметром 40 мм и длиной 150 мм. Наносили плазменным напылением и электромеханически обрабатывали: порошковое покрытие ПГСР-4 (основа - Ni, Cr 25%, Si 4,2%, В 4% и др.) и порошковое покрытие ПГС-27 (основа - Fe, Cr 25%, С 4,4%, Mn 1,3%, Ni 1,7%, Si 1,7% и др.). Покрытие наносили слоями толщиной каждого слоя 0,15-0,2 мм до общей толщины 1,0-1,1 мм. Плазменное напыление осуществляли на режимах: мощность микро-плазматрона - 1,5 кВт, дистанция напыления - 20 мм, расход плазмообразующего аргона - 2,5 л/мин, расход напыляемого порошка - 25 г/ч, скорость вращения образцов - 0,03 м/с, продольная подача плазмотрона - 0,1 мм/об.

В процессе напыления покрытия осуществляли его электромеханическую обработку обкаткой роликом из твердого сплава ВК8 с радиусами рабочего профиля r=36 и R=4 мм. Усилие обкатки обеспечивали равным 1 кН. Скорость обкатки и продольную подачу обеспечивали такими же, как и для плазменного напыления (соответственно 0,03 м/с и 0,1 мм/об). Охлаждение зоны обкатки осуществляли 10% раствором эмульсола Экол-1 (моющее средство «Эковеста» ТУ 301-04-022-92) с расходом 0,5 л/мин, а смыв его остатков - струей воды высокого давления с параметрами: расход 4,5 л/мин, давление перед форсункой 9 МПа. Плотность электрического тока электромеханической обработки обеспечивали равной 350-400 А/мм2 при напряжении 3-5 В.

Результаты обработки по предложенному способу оценивали путем металлографического анализа и измерением микротвердости на поверхности и по толщине покрытия (табл.).

№ п/п Материал покрытия Микротвердость способ комбинированного упрочнения поверхностей деталей, патент № 2480533 , МПа Отклонение Sск, МПа Коэффициент вариации k
До обработкиПосле обработкиПрирост, %До обработки После обработки До обработки После обработки
1ПГСР-4 1219217486 43,4 20452958 0,1680,169
2 ПГС-2711242 13226 17,72519 18440,224 0,139

Результаты исследований показали увеличение микротвердости на 18-43%, снижение пористости на 19-20% (поры практически отсутствуют в покрытии и на границе раздела с поверхностью детали), что является подтверждением повышения когезионной и адгезионной прочности покрытия.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ комбинированного упрочнения поверхности детали, включающий формирование на поверхности детали путем плазменного напыления покрытия и его последующую электромеханическую обработку с использованием смазочно-охлаждающей жидкости, отличающийся тем, что формирование покрытия осуществляют послойно до необходимой суммарной толщины с толщиной каждого слоя, выбираемой из условия: hсл <hкр, где hсл - толщина слоя покрытия, hкр - толщина слоя, при котором в процессе последующей электромеханической обработки происходит отслаивание или растрескивание покрытия, а после электромеханической обработки покрытие дополнительно обрабатывают струей воды высокого давления 9-10 МПа.


Скачать патент РФ Официальная публикация
патента РФ № 2480533

patent-2480533.pdf
Патентный поиск по классам МПК-8:

Класс C23C4/18 последующая обработка

Патенты РФ в классе C23C4/18:
способ изготовления термического барьера, покрывающего металлическую подложку из жаропрочного сплава, и термомеханическая деталь, полученная этим способом изготовления -  патент 2526337 (20.08.2014)
способ обработки блока цилиндров, блок цилиндров и блок цилиндров с термическим напылением -  патент 2516211 (20.05.2014)
способ нанесения покрытия на покрытую карбидом кремния подложку -  патент 2466116 (10.11.2012)
способ восстановительного ремонта ступеней центробежного насоса -  патент 2463147 (10.10.2012)
способ получения жаропрочного покрытия из вольфрама или тантала -  патент 2437960 (27.12.2011)
способ нанесения покрытий -  патент 2430192 (27.09.2011)
изготовление валков и плит, имеющих твердосплавное покрытие -  патент 2424350 (20.07.2011)
способ обработки деталей магнитопроводов электрических реактивных двигателей малой тяги -  патент 2402629 (27.10.2010)
способ получения газотермических покрытий из порошковых проволок -  патент 2394936 (20.07.2010)
способ восстановления изношенных поверхностей буксовых шеек осей колесных пар подвижного состава и путевых машин -  патент 2380208 (27.01.2010)

Класс B24B39/06 для обработки плоских поверхностей

Класс B23H9/00 Обработка специальных металлических объектов или для получения специального эффекта или результата на металлических объектах

Патенты РФ в классе B23H9/00:
технологическая оснастка для локальной электроискровой обработки внутренних поверхностей тел вращения -  патент 2527108 (27.08.2014)
способ электроэрозионного легирования поверхностей стальных деталей -  патент 2524471 (27.07.2014)
способ восстановления и упрочнения стальных рабочих лопаток влажнопаровых ступеней паровой турбины -  патент 2518036 (10.06.2014)
сотовое уплотнение и способ его изготовления -  патент 2515869 (20.05.2014)
способ локального удаления диэлектрических покрытий -  патент 2515604 (20.05.2014)
устройство для электрохимической маркировки внутренней поверхности ствола оружия -  патент 2514763 (10.05.2014)
способ электрохимической обработки лопаток с двумя хвостовиками газотурбинного двигателя и устройство для его осуществления -  патент 2514236 (27.04.2014)
способ восстановления высевающего диска для пневматического высевающего аппарата -  патент 2510318 (27.03.2014)
способ электроэрозионной обработки прецизионных сферических поверхностей -  патент 2507042 (20.02.2014)
устройство для электрохимического удаления заусенцев -  патент 2504461 (20.01.2014)


Наверх