способ лечения оспы

Классы МПК:A61K31/7105 природные рибонуклеиновые кислоты, те содержащие только рибозы, присоединенные к аденину, гуанину, цитозину или урацилу и содержащие 3"- 5" фосфодиэфирные связи
A61K39/00 Лекарственные препараты, содержащие антигены или антитела
A61P31/12 противовирусные средства
Автор(ы):, , , ,
Патентообладатель(и):Общество с ограниченной ответственностью "ВИТАЛАНГ" (RU)
Приоритеты:
подача заявки:
2012-01-18
публикация патента:

Изобретение относится к области ветеринарии и медицины. Предложено применение в качестве противооспенного средства мылкой амфифильной высокополимерной РНК Saccharomyces cerevisiae, извлекаемой из сухих пекарских дрожжей с помощью оттитрованной щелочью олеиновой кислоты или додецилсульфата натрия путем обработки выделенной РНК олеиновой кислотой. Изобретение позволяет осуществить быстрое и эффективное лечение заболеваний, вызванных поксвирусами, с помощью природного индуктора интерферона, извлекаемого из сухих пекарских дрожжей. 1 пр.

Формула изобретения

Применение в качестве противооспенного средства для лечения заболеваний, вызванных поксвирусами, мылкой амфифильной высокополимерной РНК Saccharomyces cerevisiae, извлекаемой из сухих пекарских дрожжей с помощью оттитрованной щелочью олеиновой кислоты, или с помощью додецилсульфата натрия путем обработки выделенной РНК олеиновой кислотой.

Описание изобретения к патенту

Изобретение относится к области ветеринарии и медицины, в частности к средствам, обладающим противооспенным действием, и может быть использовано для профилактики и лечения заболеваний вызванных поксвирусами.

По данным ВОЗ, смертность от инфекций продолжает занимать лидирующее место на земном шаре, и фактически инфекционные болезни уносят жизни около 15 миллионов человек ежегодно. Вторая половина XX и начало XXI столетия характеризуются увеличением частоты заболеваний, вызываемых вирусами, а также выявлением вирусной природы болезней неясной ранее этиологии и открытием новых вирусов, патогенных для человека.

Другим аспектом этой проблемы является возникновение лекарственной устойчивости у хорошо известных вирусных агентов. Это делает необходимым постоянное тестирование современных вирусных штаммов на устойчивость к химиопрепаратам и требует проведения антивирусной терапии при помощи нескольких антивирусных препаратов с различными механизмами противовирусного действия для исключения формирования лекарственно устойчивых вирусных штаммов. Поэтому вопрос о необходимости разработки и поиска новых антивирусных препаратов представляется крайне важным и особо актуальным.

Существование связанных с грызунами природных очагов, по крайней мере 6 из 11 известных вирусов, входящих в род Orthopoxvirus; нарастающее обострение эпидемической ситуации по оспе обезьян в экваториальной Африке с увеличением смертности среди людей в среднем на 9,8%; возможность сохранения вируса в трупах людей, захороненных в вечной мерзлоте Евразии и Америки; угроза биотерроризма за счет неучтенных запасов вируса, сохранившихся где-либо и у кого-либо; отсутствие у населения поствакцинального иммунитета после прекращения 30 лет назад вакцинации и производства вакцин по рекомендации ВОЗ - все это делает риск обострения эпидемической ситуации с катастрофическими последствиями в настоящее время и в обозримом будущем даже выше, чем 20-30 лет назад [1].

Антивирусные препараты, возможно, будут основными инструментами для минимизации катастрофических последствий внезапного обострения эпидемической ситуации.

В связи с вышеизложенным, а также с тем, что научное сообщество и органы здравоохранения не располагают эффективными, адаптированными для массового применения профилактическими и лечебными препаратами против поксвирусов, необходимы исследования по поиску и разработке таких препаратов.

При разработке противооспенных препаратов для первоначального скрининга эффективности препаратов, в том числе и против вируса натуральной оспы, могут использоваться другие поксвирусы, в частности на животных моделях - вирус эктромелии. На конечных этапах оценки действия препаратов для подтверждения полученных предварительных результатов необходимо использование живого вируса натуральной оспы.

Целью настоящего изобретения является быстрое и эффективное лечение заболеваний вызванных поксвирусами простым в производстве препаратом с низкой себестоимостью.

Цель достигается тем, что в качестве противооспенного средства используется природный высокоэффективный индуктор интерферона, извлекаемый из сухих пекарских дрожжей с помощью оттитрованной щелочью олеиновой кислоты или с помощью додецилсульфата натрия путем обработки выделенной РНК олеиновой кислотой - мылкий амфифильный комплекс высокополимерной РНК Saccharomyces cerevisiae с олеатом натрия (предполагаемое рыночное название - Виталанг-2). Представляется актуальным изучение его действия в отношении вируса эктромелии в моделях на лабораторных животных.

Пример осуществления предлагаемого способа

Животные

В работе использовали здоровых половозрелых животных - беспородных белых мышей обоего пола массой тела 14-16 г, полученных из питомника лабораторных животных ФГУН ГНЦ ВБ «Вектор». Все эксперименты проводились в соответствии с [2].

В эксперименте было использовано 168 мышей, из них 126 животных - в опыте (18 групп по 7 мышей в группе) и 42 - в контроле (6 групп по 7 мышей в группе).

Препарат Виталанг-2

Виталанг-2 получали по способу [3], стерилизовали по методу [4], растворяли в стерильном физиологическом растворе (ФР), встряхивая 15-30 мин в день проведения эксперимента.

Вирусы

В работе использовали вирус эктромелии, штамм К-1, полученный из отдела коллекции микроорганизмов ФГУН ГНЦ ВБ «Вектор» и наработанный на перевиваемой клеточной линии Vero (клетки почки зеленой мартышки) с титром 9,33×105 БОЕ/мл.

Испытание противовирусной активности препарата Виталанг-2 (профилактическая схема)

Препарат Виталанг-2 вводили мышам внутримышечно трехкратно в течение дня с интервалом в 4 ч (11.00, 15.00 и 19.00) в суммарной дозе 0,1 мг/кг массы животного (3 группы по 7 мышей в группе), 0,5 мг/кг массы (3 группы по 7 мышей в группе) и 1,0 мг/кг массы (3 группы по 7 мышей в группе) в объеме 200 мкл/одно введение. В качестве отрицательного контроля использовали 3 группы по 7 мышей, которым внутримышечно вводили ФР в объеме 200 мкл/одно введение три раза в течение дня в те же сроки, что и в опыте. Через 1 ч после третьего введения всех препаратов (20.00) животных заражали интраназально под эфирным наркозом летальной дозой (10 LD50, содержащих 2,57 lg БОЕ) вируса эктромелии в объеме 40 мкл/мышь. Гибель животных учитывали ежедневно в течение последующих 16 дней, оценивали процент гибели, коэффициент защиты и среднюю продолжительность жизни.

Испытание противовирусной активности препарата Виталанг-2 (лечебная схема)

Мышей опытных и контрольных групп инфицировали интраназально под эфирным наркозом летальной дозой (10 LD50, содержащих 2,57 lg БОЕ) вируса эктромелии в объеме 40 мкл/мышь (10.00).

Через 1 ч (11.00) после инфицирования мышам вводили препарат Виталанг-2 внутримышечно и затем еще дважды в течение дня с интервалом в 4 ч (15.00 и 19.00) в суммарной дозе 0,1 мг/кг массы животного (3 группы по 7 мышей в группе), 0,5 мг/кг массы (3 группы по 7 мышей в группе) и 1,0 мг/кг массы (3 группы по 7 мышей в группе) в объеме 200 мкл/одно введение. В качестве отрицательного контроля использовали 3 группы по 7 инфицированных мышей, которым через 1 ч внутримышечно вводили ФР в объеме 200 мкл/одно введение и затем еще дважды в течение дня с интервалом в 4 ч (15.00 и 19.00) в том же объеме. Гибель животных учитывали ежедневно в течение последующих 16 дней, оценивали процент гибели, коэффициент защиты и среднюю продолжительность жизни.

Статистическая обработка

Статистическую обработку данных проводили с помощью пакета прикладных программ «Statistica 6.0», используя t-критерий Стьюдента, а также U-критерий Манна-Уитни. Достоверность различий средних величин устанавливали с помощью t-критерия Стьюдента при рспособ лечения оспы, патент № 2480219 0,05.

Результаты исследований

В связи с тем, что в настоящее время нет ни одного коммерческого противовирусного препарата в отношении поксвирусов, в данных экспериментах не было использовано положительного контроля, а в качестве отрицательного контроля использовали ФР. Достоверное преимущество по количеству выживших животных по сравнению с контролем (19,1% при профилактической и лечебной схемах) наблюдалось как в группах, получавших Виталанг-2 до заражения, так и в группах, получавших данный препарат после заражения мышей летальной дозой (10 LD50) вируса эктромелии. В данных экспериментах защитный эффект зависел от дозы Виталанга-2 (количество выживших мышей составило 28,6; 38,1 и 47,6% - при использовании лечебной схемы и 42,9; 52,4 и 61,9% - при использовании профилактической схемы при дозах препарата - 0,1; 0,5 и 1,0 мг/кг массы животного соответственно). Средняя продолжительность жизни при заражении мышей 10 LD50 вирусом эктромелии во всех группах, получавших Виталанг-2 до заражения и после заражения, за исключением одной группы (при дозе препарата 0,1 мг/кг в профилактической схеме), была достоверно выше, чем в контроле.

Таким образом, препарат Виталанг-2 является эффективным противооспенным средством и после соответствующих доклинических и клинических испытаний может быть рекомендован для лечения заболеваний, вызванных поксвирусами. Лечение можно начинать на любых стадиях болезни, терапевтическая доза - 1 мг/кг массы тела животного или человека.

Работа выполнена при финансовой поддержке Министерства образования и науки Российской Федерации (Государственный контракт № 16.512.11.2018 от 11.02.2011).

Источники информации

1. Львов Д.К., Зверев В.В., Гинцбург А.Л., Маренникова С.С., Пальцев М.А. Натуральная оспа - дремлющий вулкан // Вопросы вирусологии. - 2008. - № 4. - С.4-8.

2. Европейская конвенция по защите позвоночных животных, используемых в экспериментальных и других научных целях. Страсбург, 1986.

3. Пат. 2403288 РФ. Способ получения высокополимерной РНК из сухих пекарских дрожжей / Ямковая Т.В., Загребельный С.Н., Панин Л.Е. Ямковой В.И.; опубл. 10.11.2010, Бюл. № 31.

4. Пат. 2397988 РФ. Способ терминальной стерилизации высокополимерной дрожжевой РНК / Ямковая Т.В., Кузовкова Е.В., Железнова Ю.П., Загребельный С.Н., Панин Л.Е. Ямковой В.И.; опубл. 27.08.2010, Бюл. № 24.

Класс A61K31/7105 природные рибонуклеиновые кислоты, те содержащие только рибозы, присоединенные к аденину, гуанину, цитозину или урацилу и содержащие 3"- 5" фосфодиэфирные связи

способ количественной оценки эффективности олеиновой кислоты как переносчика рнк через биологические мембраны -  патент 2523119 (20.07.2014)
композиции и способы лечения плохо заживающих ран -  патент 2521329 (27.06.2014)
способ комплексной реабилитации детей с хроническим микробно-воспалительным поражением мочевого тракта со сниженным имунным статусом -  патент 2519634 (20.06.2014)
способ лечения гриппа птиц -  патент 2502512 (27.12.2013)
противогерпетическое средство -  патент 2502504 (27.12.2013)
композиция и способ лечения опухолей -  патент 2500815 (10.12.2013)
способ лечения рецидивирующего урогенитального герпеса с симптомами хронической усталости -  патент 2492861 (20.09.2013)
способ получения лекарственных и биологически активных средств -  патент 2479318 (20.04.2013)
связывающие комплемент аптамеры и средства против с5, пригодные для лечения глазных нарушений -  патент 2477137 (10.03.2013)
on01910.na, усиливающий активность химиотерапевтического агента в резистентных к лекарственным средствам опухолях -  патент 2476239 (27.02.2013)

Класс A61K39/00 Лекарственные препараты, содержащие антигены или антитела

лекарственное средство для лечения патологического синдрома и способ лечения острых и хронических заболеваний дыхательноый системы и синдрома кашля -  патент 2529783 (27.09.2014)
холодоадаптированный штамм вируса гриппа в-в/виктория/2/63/87, предназначенный в качестве штамма-донора аттенуации для получения реассортантов холодоадаптированных штаммов для живой гриппозной вакцины -  патент 2529772 (27.09.2014)
лечение опухолей с помощью антитела к vegf -  патент 2528884 (20.09.2014)
способ получения концентрата микробных клеток для получения живой туляремийной вакцины -  патент 2528878 (20.09.2014)
вакцины и компоненты вакцин для подавления микробных клеток -  патент 2528854 (20.09.2014)
рекомбинантная вакцина на основе инактивированного вирусного вектора -  патент 2528750 (20.09.2014)
антитела, узнающие углеводсодержащий эпитоп на cd43 и сеа, экспрессируемых на раковых клетках и способы их применения -  патент 2528738 (20.09.2014)
антитела против альфа5-бета 1 и их применение -  патент 2528736 (20.09.2014)
антагонисты pcsk9 -  патент 2528735 (20.09.2014)
способ лечения больных с синдромом диспепсии в сочетании с избыточной массой тела -  патент 2528641 (20.09.2014)

Класс A61P31/12 противовирусные средства

способ получения алкилбензилдиметиламмонийфторидов, обладающих противовирусным и антибактериальным действием -  патент 2529790 (27.09.2014)
5-метил-6-нитро-7-оксо-4,7-дигидро-1,2,4-триазоло[1,5-альфа]пиримидинид l-аргининия моногидрат -  патент 2529487 (27.09.2014)
новое производное пиразол-3-карбоксамида, обладающее антагонистической активностью в отношении рецептора 5-нт2в -  патент 2528406 (20.09.2014)
фармацевтическая композиция и способ получения противовирусных фракций (антивирус-с) -  патент 2526799 (27.08.2014)
средство для снижения репродукции вируса гепатита с -  патент 2526179 (20.08.2014)
применение соли ацетилсалициловой кислоты для лечения вирусных инфекций -  патент 2524304 (27.07.2014)
пептидные производные 1-(1-адамантил)этиламина и их противовирусное действие -  патент 2524216 (27.07.2014)
способ получения противовирусного средства и противовирусное средство -  патент 2522880 (20.07.2014)
способ изготовления вакцины против ящура -  патент 2522868 (20.07.2014)
способ получения антирабической вакцины -  патент 2522866 (20.07.2014)
Наверх