способ обработки высокотемпературного сверхпроводника

Классы МПК:H01B12/00 Сверхпроводники, сверхпроводящие кабели или передающие линии
H01L39/24 способы и устройства, специально предназначенные для изготовления или обработки предусмотренных в  39/00 приборов или их частей
C22F1/18 тугоплавких или жаростойких металлов или их сплавов 
Автор(ы):, , , , ,
Патентообладатель(и):Федеральное государственное бюджетное учреждение науки Институт общей физики им. А.М. Прохорова Российской академии наук (RU),
ООО "РТИ, Криомагнитные системы" (RU),
Федеральное государственное бюджетное учреждение науки Институт кристаллографии им. А.В. Шубникова Российской академии наук (RU)
Приоритеты:
подача заявки:
2012-03-01
публикация патента:

Изобретение относится к области сверхпроводимости и нанотехнологий, а именно к способу получения и обработки композитных материалов на основе высокотемпературных сверхпроводников (BTCП), которые могут быть использованы в устройствах передачи электроэнергии, для создания токоограничителей, трансформаторов, мощных магнитных систем. Способ обработки высокотемпературного сверхпроводника, представляющего собой композитную структуру, состоящую из материала подложки с нанесенными на нее буферными слоями из оксидов металлов, слоя сверхпроводящего материала из оксидов металлов, поверх которого нанесен защитный слой из серебра, заключается в облучении указанной структуры ионным пучком тяжелых благородных газов с энергией от 48 до 107 МэВ с флюенсом 2×1010-5×10 10 ионов/см2 и плотностью ионного тока 2,6×10 -8-6,5×10-8 А/см2 при поддержании температуры от 30°С до 100°С, с обеспечением снятия внутренних упругих напряжений в композитной структуре. 3 ил., 1 табл. способ обработки высокотемпературного сверхпроводника, патент № 2477900

способ обработки высокотемпературного сверхпроводника, патент № 2477900 способ обработки высокотемпературного сверхпроводника, патент № 2477900 способ обработки высокотемпературного сверхпроводника, патент № 2477900

Формула изобретения

Способ обработки высокотемпературного сверхпроводника, представляющего собой композитную структуру, состоящую из материала подложки с нанесенными на нее буферными слоями из оксидов металлов, слоя сверхпроводящего материала из оксида металлов, поверх которого нанесен защитный слой из серебра, заключающийся в облучении указанной структуры энергетическим потоком, отличающийся тем, что облучение композитной структуры осуществляют ионным пучком тяжелых благородных газов с энергией от 48 до 107 МэВ с флюенсом 2·1010 -5·1010 ионов/см2 и плотностью ионного тока 2,6·10-8-6,5·10-8 А/см 2 при поддержании температуры от 30°С до 100°C с обеспечением снятия внутренних упругих напряжений в композитной структуре.

Описание изобретения к патенту

Изобретение относится к области сверхпроводимости и нанотехнологий, а именно к технологии получения и обработки композитных материалов на основе высокотемпературных сверхпроводников (ВТСП), которые в перспективе могут быть применены для передачи электроэнергии, для создания токоограничителей, трансформаторов, мощных магнитных систем.

Технология получения ВТСП 2-го поколения предполагает послойное эпитаксиальное нанесение буферных слоев нанометровой толщины для согласования параметров кристаллической решетки ВТСП материала с подложкой, которая определяет механическую прочность композита.

Однако полного согласования параметров достичь невозможно, особенно при изготовлении длинномерного композита. Поэтому оказывается, что слой сверхпроводника имеет локальные упругие напряжения, которые могут постепенно привести к разрушению пленочного ВТСП слоя. Чем больше рассогласование параметров кристаллических решеток, тем при меньшей толщине пленки теряется ее морфологическая стабильность. Особенно это проявляется при изготовлении длинномерных композитных сверхпроводников.

В случае толстых пленок и объемных образцов упругие напряжения обычно снимаются долговременным тепловым отжигом, но в слоях нанометровых масштабов термический отжиг не применяется из-за диффузионного размытия, приводящего к резкому снижению функциональных параметров.

Известен способ обработки сверхпроводников (Wu Ming Chen, S.S.Jiang, Y.C.Guo, J.R.Jin, X/S.Wu, X.H.Wang, X.Jin, X.N.Xu, X.X.Yao, S.X.Dou. Effects of low-energy neutron irradiation on Bi-based superconductors. Physica С 299 (1998,) pp.77-82 [1]), заключающийся в облучении сверхпроводниковой композиции с висмутом Bi (2223) нейтронами низкой энергии. В результате такого облучения критический ток сверхпроводника увеличивается на 30%, а критическая температура увеличивается на 2,5-5,0 К.

Известен способ обработки сверхпроводников (D.H.Galvan, Shi Li, W.M.Yuhasz, JunHo Kim, M.B.Maple, E.Adem. Superconductivite of N0802 samples subjected to electron irradiation. Physica С 398 (2003), P.147-151 [2]), заключающийся в облучении сверхпроводника NbSe2 электронами на ускорителе Ван де Граафа различными дозами облучения 100, 200 и 500 Мрад. В результате такого облучения критический ток увеличился в два раза по сравнению с необлученными образцами.

Известен также способ обработки сверхпроводящих материалов (патент РФ № 2404470, МПК Н01В 12/00 от 16.12.2009 [3]), основанный на формировании плазменного потока в газовой среде и воздействии им на твердотельную мишень, при котором формируют сфокусированную магнитным полем кумулятивную плазменную струю в импульсном режиме со скоростью истечения струи (4-10)·105 м/сек с обеспечением в импульсе давления струи на твердотельную мишень 105-106 атмосфер, температурой более 10 6°С и плотностью потока энергии в плазменной струе 108-1010 Вт/см2, причем при воздействии плазменным потоком на твердотельную мишень создают в ней ударную волну и передают энергию ударной волны через слой вязкой среды на сверхпроводящий материал.

Недостатками известных способов обработки сверхпроводников [1, 2, 3] является наличие в слоях сверхпроводника локальных упругих напряжений, которые постепенно приводят к разрушению пленочного ВТСП слоя.

Наиболее близким по технической сущности к предлагаемому изобретению является известный способ синтеза сверхпроводника с ионным ассистированием (Kidszun M., Huehne R., Holzapfel В., Schultz L. Ion-beam-assisted deposition oftextured NbN thin films. // Supercond. Sci. Technol. 2010. V.23. 025010 6pp.). Этот способ синтеза предусматривает одновременное осаждение ниобия и ионную имплантацию азота.

Существуют разные модификации применения методов обработки с ионным ассистированием, в зависимости от цели: в одних случаях происходит синтез нескольких компонент, в других - уплотнение пленки. В известном способе обработки сверхпроводника используют ионы низких энергий - десятки кэВ, что не обеспечивает желаемого результата - полного устранения локальных упругих напряжений в слоях и повышения механической прочности и долговечности длинномерного композитного сверхпроводника. Для низкоэнергетических ионов, как в прототипе, длина пробега оказывается меньше, чем толщина слоя серебра, поэтому требуются тяжелые ионы высоких энергий.

Технический результат, заключающийся в устранении отмеченного недостатка, в предлагаемом способе обработки высокотемпературного сверхпроводника, представляющего собой композитную структуру, состоящую из материала подложки с нанесенными на нее буферными слоями из оксидов металлов, слоя сверхпроводящего материала на основе купратов бария и редкоземельных элементов, поверх которого нанесен защитный слой из серебра, достигается тем, что облучение композитной структуры осуществляют ионным пучком тяжелых благородных газов с энергией от 48 до 107 МэВ с флюенсом 2×1010 -5×1010 ионов/см2 и плотностью ионного тока 2,6×10-8-6,5×10-8 А/см 2 при поддержании температуры от 30°С до 100°C с обеспечением снятия внутренних упругих напряжений в композитной структуре.

Сущность изобретения поясняется чертежами, где:

- на фиг.1 показан в изометрии разрез композитного ВТСП в увеличенном масштабе;

- на фиг.2 приведена микрофотография структуры композитного ВТСП, полученная на растровом электронном микроскопе;

- на фиг.3 приведена микрофотография композитного ВТСП, полученная на растровом электронном микроскопе: а) до обработки; б) после обработки;

Предлагаемый способ осуществляется следующим образом.

Для осуществления способа используется высокотемпературный сверхпроводник (ВТСП), представляющий собой композитную структуру (фиг. 1): слой 1 серебра (способ обработки высокотемпературного сверхпроводника, патент № 2477900 =2 мкм); слой 2 YB2C3O7-x (способ обработки высокотемпературного сверхпроводника, патент № 2477900 =1 мкм) - (в дальнейшем используем обозначение YBCO); слой 3 оксида Lа3О3 (способ обработки высокотемпературного сверхпроводника, патент № 2477900 =37 нм); слой 4 оксида МgО (способ обработки высокотемпературного сверхпроводника, патент № 2477900 =58 нм); слой 5 оксида Y2О3 (способ обработки высокотемпературного сверхпроводника, патент № 2477900 =10 нм); слой 6 оксида Аl2О3 (способ обработки высокотемпературного сверхпроводника, патент № 2477900 =93 нм); и подложка 7 из сплава хастеллой (способ обработки высокотемпературного сверхпроводника, патент № 2477900 =50-100 мкм).

Обработка ВТСП заключается в облучении указанной структуры энергетическим потоком - ионным пучком тяжелых благородных газов (Аr8+, Kr17+ с энергией от 48 до 107 МэВ с флюенсом 2×1010 -5×1010 ионов/см2 и плотностью ионного тока 2,6×10-8-6,5×10-8 А/см 2 при поддержании температуры от 30°С до 100°C с обеспечением снятия внутренних упругих напряжений в композитной структуре.

В исходных образцах сверхпроводника были обнаружены упругие напряжения. На фиг. 3а представлена микрофотография исходного ленточного ВТСП, на которой темная область является сверхпроводящим слоем YBCO 2, а косые линии 8 являются дефектами структуры - трещинами, возникшими в результате внутренних упругих напряжений.

Образец той же серии был облучен ионами криптона 84Кr17+ с энергией 107 МэВ и флюенсом 1×1010 ионов/см2. Затем он был изучен с помощью электронной микроскопии. На микрофотографии никаких дефектов структуры типа трещин не обнаружено (фиг.3б).

Таким образом, в результате обработки композитного ВТСП по предлагаемому способу происходит снятие внутренних напряжений в пленке сверхпроводника - см. фиг.3б.

Подтверждение описанных результатов было получено при рентгеноструктурных исследованиях облученных ионами образцов. Три другие образца той же серии были исследованы после облучения ионами аргона 40Аr8+ с энергией от 48 МэВ до 107 МэВ с помощью дифракции рентгеновских лучей. Была получена серия дифрактограмм этих образцов YBCO. Измерялась ширина пиков дифракционного отражения на половине их высоты при облучении ионами аргона при различных флюенсах.

Известно, что по ширине пиков отражения можно судить о наличии напряжений в кристаллической решетке. Результаты, полученные в предлагаемом способе, представлены в таблице.

№ № п/пФлюенс (Ф) ионов 40Аr8+ Плотность ионного тока, А/см2 Температура, °С Ширина на половине высоты, град
12 34 5
1 0 (облучения нет) - -0.108
2 2.0×1010 ион/см2 2,6×10-8 300.096
3 5.0×1010 ион/см2 6,5×10-8 400.098
4 1.0×1011 ион/см2 1,3×10-7 800.107
5 5.0×1011 ион/см2 6,5×10-7 1000.107

Как видно из приведенных данных (см. столбец 4 таблицы), минимальная ширина пика дифракционного отражения соответствует не исходному (необлученному) образцу (строка 1 таблицы), а образцу после облучения с флюенсами (2-5)×10 10 ион/см2 (строки 2 и 3 таблицы).

Отметим, что при таких флюенсах было также обнаружено увеличение критического тока, связанное с генерацией дополнительных центров пиннинга, так называемых столбчатых дефектов. При выходе за пределы указанного диапазона значений флюенса и плотности ионного тока улучшения качества структуры не наблюдается - это доказывается значениями ширины на половине высоты дифракционного отражения (см. столбец 5, 4-я и 5-я строки таблицы). Таким образом, предлагаемый способ обработки высокотемпературного сверхпроводника позволяет устранить недостатки прототипа, поскольку обеспечивает снятие внутренних упругих напряжений композитных многослойных ВТСП и одновременно приводит к увеличению критического тока. Предлагаемый способ соответствует критерию промышленной применимости, поскольку был опробован на реальных, промышленно изготавливаемых ВТСП и неоднократно воспроизводился с получением стабильных результатов на ускорителе ионов типа ИЦ-100.

Класс H01B12/00 Сверхпроводники, сверхпроводящие кабели или передающие линии

сверхпроводящий провод на основе nb3sn -  патент 2522901 (20.07.2014)
способ получения керамического проводника, система для его получения и сверхпроводящий проводник с его применением -  патент 2521827 (10.07.2014)
сверхпроводящая многофазная кабельная система, способ ее изготовления и ее применение -  патент 2521461 (27.06.2014)
ленточный втсп-провод -  патент 2518505 (10.06.2014)
сверхпроводящий многожильный ленточный провод для переменных и постоянных токов -  патент 2516291 (20.05.2014)
способ и устройство для охлаждения сверхпроводящего кабеля -  патент 2491671 (27.08.2013)
сверхпроводящий электрический кабель -  патент 2479055 (10.04.2013)
способ изготовления оксидной сверхпроводящей тонкой пленки -  патент 2476945 (27.02.2013)
устройство со сверхпроводящим кабелем -  патент 2475876 (20.02.2013)
многократно стабилизированный композитный сверхпроводящий провод, содержащий nbti -  патент 2464659 (20.10.2012)

Класс H01L39/24 способы и устройства, специально предназначенные для изготовления или обработки предусмотренных в  39/00 приборов или их частей

способ электроискрового формирования тонкопленочной втсп схемы -  патент 2508576 (27.02.2014)
металлическая сборка, заготовка для сверхпроводника, сверхпроводник и способ, пригодный для получения сверхпроводника -  патент 2507636 (20.02.2014)
устройство и способ для нанесения сверхпроводящих слоев -  патент 2503096 (27.12.2013)
способ осуществления гиперпроводимости и сверхтеплопроводности -  патент 2497236 (27.10.2013)
способ изготовления подложки для высокотемпературных тонкопленочных сверхпроводников и подложка -  патент 2481674 (10.05.2013)
способ изготовления тонкопленочного высокотемпературного сверхпроводящего материала -  патент 2481673 (10.05.2013)
способ изготовления сверхпроводниковых однофотонных детекторов -  патент 2476373 (27.02.2013)
способ формирования гладких ультратонких ybco пленок повышенной проводимости -  патент 2450389 (10.05.2012)
устройство для высокотемпературного осаждения сверхпроводящих слоев -  патент 2443038 (20.02.2012)
способ изготовления устройств с тонкопленочными сверхпроводниковыми переходами -  патент 2442246 (10.02.2012)

Класс C22F1/18 тугоплавких или жаростойких металлов или их сплавов 

способ комбинированной интенсивной пластической деформации заготовок -  патент 2529604 (27.09.2014)
способ изготовления заготовок из титана -  патент 2529131 (27.09.2014)
сплав на основе алюминида титана и способ обработки заготовок из него -  патент 2525003 (10.08.2014)
способ изготовления тонких листов -  патент 2522252 (10.07.2014)
способ изготовления поковок дисков из сплава алюминия титана на основе орто-фазы -  патент 2520924 (27.06.2014)
сплав на основе гамма алюминида титана -  патент 2520250 (20.06.2014)
способ изготовления каркасов искусственных клапанов сердца из технически чистого титана -  патент 2514765 (10.05.2014)
способ ковки термомеханической детали, выполненной из титанового сплава -  патент 2510680 (10.04.2014)
способ получения трубы из технически чистого титана с радиальной текстурой -  патент 2504598 (20.01.2014)
способ термической обработки литых заготовок из заэвтектоидных интерметаллидных сплавов на основе фаз -tial+ 2-ti3al -  патент 2503738 (10.01.2014)
Наверх