способ диагностики необратимости восстановления тяжелых двигательных нарушений у больных с ишемическими инсультами полушарной локализации в хронической стадии

Классы МПК:A61B5/055 с применением электронного или ядерного магнитного резонанса (ЯМР), например получение изображения с помощью магнитного резонанса
Автор(ы):, , , ,
Патентообладатель(и):Учреждение Российской академии медицинских наук Научный центр неврологии РАМН (НЦН РАМН) (RU)
Приоритеты:
подача заявки:
2011-10-05
публикация патента:

Изобретение относится к области медицины, а именно к методам диагностики и нейровизуализации у постинсультных больных. Проводят исследование кортикоспинального тракта (КСТ) головного мозга в режиме диффузно-тензорной магнитно-резонансной томографии (ДТ МРТ) и рассчитывают фракционную анизотропию (ФА). При этом индекс ФА определяют в области передних двух третей заднего бедра внутренней капсулы, основания ножки мозга, верхнего уровня основания варолиева моста. Индекс рассчитывают как отношение ФА на стороне поражения к ФА на здоровой стороне в процентах. При показателях фракционной анизотропии во внутренней капсуле ниже 50%, в ножке мозга ниже 42%, в варолиевом мосту ниже 63% диагностируют необратимость двигательных нарушений. Способ позволяет повысить достоверность диагностики необратимости восстановления тяжелых двигательных нарушений у больных с ишемическим инсультом полушарной локализации в хронической стадии, что достигается за счет получения количественных пороговых значений ФА. 1 ил., 4 табл., 2 пр.

способ диагностики необратимости восстановления тяжелых двигательных   нарушений у больных с ишемическими инсультами полушарной локализации   в хронической стадии, патент № 2477620

Формула изобретения

Способ диагностики необратимости восстановления тяжелых двигательных нарушений у больных с ишемическими инсультами полушарной локализации в хронической стадии, включающий исследование кортикоспинального тракта (КСТ) головного мозга в режиме диффузно-тензорной магнитно-резонансной томографии (ДТ МРТ) и расчет фракционной анизотропии (ФА), отличающийся тем, что рассчитывают индекс ФА в области передних двух третей заднего бедра внутренней капсулы, основания ножки мозга, верхнего уровня основания варолиева моста по формуле:

способ диагностики необратимости восстановления тяжелых двигательных   нарушений у больных с ишемическими инсультами полушарной локализации   в хронической стадии, патент № 2477620 ,

где ФА сп - ФА на стороне поражения;

ФА зс - ФА на здоровой стороне,

и при показателях фракционной анизотропии во внутренней капсуле ниже 50%, в ножке мозга ниже 42%, в варолиевом мосту ниже 63% диагностируют необратимость двигательных нарушений.

Описание изобретения к патенту

Изобретение относится к медицине, а именно к диагностическим методам нейровизуализации у постинсультных больных.

Инсульт является ведущей причиной длительной инвалидизации: более чем у половины пациентов, перенесших инсульт, сохраняется двигательный дефект, требующий проведения реабилитационных мероприятий [Duncan PW. Goldstein LB. Matchar D. et al. Measurement of motor recovery after stroke: outcome assessment and sample size requirments. Stroke 1992; 23: 1084-1089]. К настоящему времени отсутствуют общепризнанные стандарты прогнозирования объема и темпов восстановления двигательных функций. Это значительно затрудняет выбор вида и продолжительности реабилитации и, как следствие, невозможности расчета экономических затрат на восстановление пациентов.

Восстановление нарушенных двигательных функций у больных происходит вследствие реорганизации мозговых нейрональных сетей в структурно и функционально неповрежденных областях головного мозга. Это возможно при условии, что нисходящие двигательные пути способны реализовывать новую двигательную программу [Gerloff С, Bushara К, Sailer A et al. Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke. Brain 2006; 129: 791-808. Ward N.S. Future perspectives in functional neuroimaging in stroke recovery. Eura medicophys 2007; 43: 285-94].

Основным путем, обеспечивающим движения, является кортикоспинальный тракт (КСТ). Знание его анатомической проекции позволяет с помощью стандартных режимов МРТ приблизительно оценивать его ишемическое поражение и вероятность развития двигательных расстройств.

При использовании различных методов количественной оценки постишемической деструкции тканей мозга (МРТ-волюмометрия инфаркта, МРТ-морфометрия ножки мозга, диффузионно-взвешенная МРТ) для характеристики двигательных расстройств и их восстановления были получены разнонаправленные результаты либо недостаточно убедительные закономерности [Baird AE, Lövblad КО, Dashe JF et al. Clinical correlations of diffusion and perfusion lesion volumes in acute ischemic stroke. Cerebrovasc Dis 2000; 10:441-448; Rossi ME, Jason E, Marchesotti S et al. Diffusion tensor imaging correlates with lesion volume in cerebral hemisphere infarctions. BMC Medical Imaging 2010; 10: 21-33; Yamada К, Ito H, Nakamura H et al. Stroke patients' evolving symptoms assessed by tractography. J Magn Reson Imaging 2004; 20: 923-9].

Другой МРТ-методикой количественной оценки структуры проводящих путей, как непосредственно прилегающих к зоне ишемии, так и расположенных вдали от нее, является модификация ДВ-МРТ - диффузионно-тензорная МРТ (ДТ-МРТ). ДТ-МРТ в отличие от ДВ-МРТ определяет и направление (анизотропию) диффузии. Измеренные величины и направление движения молекул воды (три собственных значения и три вектора) в каждом объемном элементе изображения (векселе) лежат в основе построения карт диффузионного тензора. Три собственных значения диффузионного тензора (фракционная анизотропия - ФА) дают информацию о форме напряжения диффузии в векселе, отражая разницу между изотропной (ненаправленной) и линейной (направленной) диффузией. ФА варьирует между 0 и 1, где 0 - изотропная диффузия, 1 - направленная. Высокие показатели ФА соответствуют однонаправленной диффузии молекул воды, т.е. сохранным компактно расположенным пучкам белого вещества, идущим в одном направлении. Низкие показатели ФА характерны для волокон пораженных областей (локальное повреждение тканей и/или валлеровское перерождение) [Werring DJ, Toosy AT, Clark CA et al. Diffusion tensor imaging can detect and quantify corticospinal tract degeneration after stroke. J Neurol Neurosurg Psychiatry 2000; 69 (2): 269-72]. Ранее при исследовании ДТ-МРТ больных с двигательными нарушениями в разные стадии ишемического инсульта сообщалось о ранней, прогрессирующей и хронической потере ФА [Thomalla G, Glauche V, Koch MA Diffusion tensor imaging detects early Wallerian degeneration of the pyramidal tract after ischemic stroke. Neuroimage 2004; 22: 1767-74; Thomalla G, Glauche V, Weiller C, Rother J. Time course of wallerian degeneration after ischaemic stroke revealed by diffusion tensor imaging. J Neurol Neurosurg Psychiatry 2005; 76: 266-8; Werring DJ, Toosy AT, Clark CA et al. Diffusion tensor imaging can detect and quantify corticospinal tract degeneration after stroke. J Neurol Neurosurg Psychiatry 2000; 69 (2): 269-72].

Исследование небольшой однородной группы пациентов с глубокими полушарными инфарктами показало большие различия в ФА между пораженным и здоровым полушарием у больных с плохим восстановлением двигательных функций [Nelles M, Gieseke J, Flacke S et al. Diffusion tensor pyramidal tractography in patients with anterior choroidal artery infarcts. AJNR Am J Neuroradiol 2008]. Однако во всех вышеперечисленных работах исследователи не использовали показатель ФА для количественной характеристики степени двигательных нарушений и определения его пороговых значений при необратимости двигательного дефицита. Данная работа использована авторами в качестве прототипа предлагаемого способа диагностики необратимости восстановления тяжелых двигательных нарушений.

Мы использовали данные установленных общих закономерностей зависимости ФА от восстановления для уточнения количественной взаимосвязи между потерей ФА в проекции КСТ и степенью двигательных нарушений при исследовании больных с полушарными инфарктами в хронической стадии ишемического инсульта (ИИ). Выбор данных сроков исследования определялся стабильностью ФА в этот постинсультный период, что обусловлено завершенностью процессов деструкции, приводящей к аксональной дегенерации и глиозу непосредственно в области инфаркта и валлеровскому перерождению удаленных участков белого вещества.

Техническим результатом изобретения является получение на основе ДТ-МРТ количественных пороговых значений ФА (индекс, %) при измерении в трех точках проекции КСТ (передние две трети заднего бедра внутренней капсулы, основание ножки мозга, верхний уровень основания моста), на основании чего диагностируется необратимость восстановления тяжелых двигательных нарушений и делается заключение о нецелесообразности дальнейшей классической реабилитации с целью увеличения объема движений.

Это достигается тем, что после проведения исследования в режиме диффузионно-тензорной МРТ (ДТ-МРТ) на МР-сканере Siemens Magnetom Avanto 1,5T по стандартному протоколу, включающему режим одиночной спин-эхо эхо-планарной пульсовой последовательности TR=3400 мс, ТЕ=102 мс, в 20 равномерно распределенных направлениях пробного движения b=1000 сек/мм2, FOV=230 мм, размер векселя 5.0×5.0×5.0 мм, были посчитаны диффузионные тензоры в каждом векселе (программное обеспечение приложения Neuro3D рабочей станции Leonardo Siemens). На основании собственных значений диффузионных тензоров построены ФА-карты и аксиальные карты цветного кодирования направленности волокон. У каждого больного вручную в соответствии с атласом МРТ белого вещества были выделены 3 области интереса, соответствующие компактному расположению КСТ, в обоих полушариях головного мозга: 1) передние две трети заднего бедра внутренней капсулы; 2) основание ножки мозга; 3) верхний уровень основания моста (Рис.). На указанном рисунке обозначены области исследования КСТ:

а) Схема анатомической проекции областей исследования КСТ. Первая зона интереса - передние две трети заднего бедра внутренней капсулы; вторая - основание ножки мозга; третья - верхний уровень основания варолиева моста.

б) Выделение областей исследования КСТ на аксиальных картах ФА.

У больных с полной деструкцией области интереса на пораженной стороне объем исследования определялся как зеркальное отражение такового на непораженной стороне. Для всех трех зон интереса было рассчитано нормализованное отношение (индекс):

способ диагностики необратимости восстановления тяжелых двигательных   нарушений у больных с ишемическими инсультами полушарной локализации   в хронической стадии, патент № 2477620 , где

ФА сп - ФА на стороне поражения;

ФА зс - ФА на здоровой стороне.

Большее процентное значение отражало лучшую структурную целостность КСТ на стороне поражения.

В исследование было включено 19 пациентов, отобранных случайным образом (11 мужчин, 8 женщин, ср. возраст 38,9±6,2 года) с гемипарезом различной степени выраженности, перенесшие единственный ИИ полушарной локализации за 6-11 месяцев до обследования. Все больные проходили повторные курсы классической реабилитации, включающей лечебную физкультуру, массаж, физиотерапевтические процедуры, а при наличии выраженного, грубого пареза и плегии - роботизированную терапию. Двигательная функция оценивалась по шкале НИИ неврологии РАМН для спастического пареза (1996 год): отсутствие двигательных нарушений - 0 баллов; легкий парез (движения: объем - 75-100% от нормы; характер - снижение темпа) - 1 балл; умеренный парез (движения: объем - 50-75% от нормы; характер - неловкие) - 2 балла; выраженный парез (движения: объем - 25-50% от нормы; характер - глобальные) - 3 балла; грубый парез (движения: объем - 25% от нормы; характер - крайне ограниченные) - 4 балла; плегия (активных движений нет) - 5 баллов [Столярова Л.Г., Кадыков А.С., Ткачева Г.Р. Система оценок состояния двигательных функций у больных с постинсультными парезами. Журн. Невропатология и психиатрия 1982; 9: 15-18]. В зависимости от исхода восстановления двигательных функций больные были разделены на три группы: I группа - неблагоприятное восстановление, тяжелые двигательные нарушения (5 и 4 балла, n=10), II группа - умеренное восстановление (3 балла, n=5), III группа - благоприятное восстановление (2 и 1 балл, n=4).

Для статистической обработки применялась программа SPSS 16.0 для Windows. Уровень статистической значимости р<0,05. Уточнение взаимосвязи ФА (индекс, %) во всех трех исследуемых областях со степенью пареза в баллах проводилось с помощью корреляционного анализа Spearman. При сопоставлении значений ФА (индекс, %) между группами пациентов с различными исходами восстановления использовался Mann-Witney U тест. Пороговые значения ФА (индекс, %) с расчетом их чувствительности, специфичности и площади под кривой определялись для тяжелых двигательных нарушений (неблагоприятный исход восстановления) с помощью Receiver Operator Characteristic (ROC) анализа.

Клинические данные и полученные значения ФА (индекс, %) обследованных больных представлены в Таблице 1.

Таблица 1
Клинические данные и ФА (индекс, %) обследованных больных
больной возраст (лет) пол время после ИИ (мес) степень пареза (баллы) исход восстановления (группы) ФА (индекс, %)
внутр. капсуланожка мозгамост
1 42м 105 I44 2858
2 37ж 8,55 I38 7850
3 44м 85 I31 3046
4 47м 125 I9 3636
5 40м 105 I15 3759
6 40м 65 I21 3033
7 33м 8,54 I16 2545
8 22ж 124 I65 4163
9 40м 64 I56 3946
10 37ж 84 I46 4150
11 45ж 63 II68 6954
12 45м 63 II58 8867
13 40ж 10,53 II64 6873
14 44м 83 II55 5565
15 39ж 63 II62 6963
16 37ж 10,52 III70 6768
17 30м 82 III77 6970
18 45м 121 III83 9783
19 32ж 61 III98 96101

Показателем надежности выбранного параметра ФА (индекс, %), отражающего структурную целостность КСТ для характеристики пороговых значений необратимости тяжелых двигательных нарушений, является выявленная его достоверная высокая отрицательная корреляционная зависимость со степенью пареза в баллах во внутренней капсуле (R=-0,89; p<0,0001), ножке мозга (R=-0,73; p<0,0001), варолиевом мосту (R=-0,82; p<0,0001) (корреляционный анализ Spearman) (Таблица 2).

Таблица 2
Взаимосвязь ФА (индекс, %) со степенью пареза (баллы) (корреляционный анализ Spearman)
ФА (индекс, %) парез (баллы)
Rр
внутренняя капсула -0,89 0,0001
ножка мозга-0,73 0,0001
варолиев мост -0,820,0001

В соответствии с проведенным ROC анализом пороговые значения ФА (индекс, %) для тяжелых двигательных нарушений составили: во внутренней капсуле - 50% (чувствительность 90%, специфичность 80%, площадь под кривой 0,85, р=0,008), в ножке мозга - 42% (чувствительность 100%, специфичность 90%, площадь под кривой 0,93, р=0,001), варолиев мост - 63% (чувствительность 80%, специфичность 100%, площадь под кривой 0,92, р-0,001) (Таблица 3).

Таблица 3
Пороговые значения ФА (индекс, %) тяжелых двигательных нарушений (неблагоприятный исход восстановления движений) (Receiver Operator Characteristic анализ)
способ диагностики необратимости восстановления тяжелых двигательных   нарушений у больных с ишемическими инсультами полушарной локализации   в хронической стадии, патент № 2477620 пороговое значение ФА(индекс, %) чувствительность (%) специфичность (%) площадь под кривой p
внутренняя капсула50 9080 0,850,008
ножка мозга 42 10090 0,930,001
варолиев мост 63 80100 0,920,001

Высокая диагностическая точность показателей позволяет использовать их в качестве критериев для выделения больных с тяжелыми двигательными нарушениями, чье дальнейшее двигательное восстановление резко ограничено и проведение реабилитации с целью увеличения объема движений неперспективно.

Примеры:

1. Пациент К., 44 лет, перенес нарушение мозгового кровообращения с развитием инфаркта в глубоких отделах правого полушария за 8 месяцев до исследования. В неврологическом статусе - левосторонняя гемиплегия (5 баллов).

2. Пациент Т., 30 лет, перенес нарушение мозгового кровообращения с развитием инфаркта в глубоких отделах правого полушария за 8,5 месяцев до исследования. В неврологическом статусе - умеренный левосторонний гемипарез (2 балла). Данные клинико-нейровизуализационного исследования приведены в (Таблице 4).

Таблица 4
Клинико-нейровизуализационные данные пациентов К. и Т.
способ диагностики необратимости восстановления тяжелых двигательных   нарушений у больных с ишемическими инсультами полушарной локализации   в хронической стадии, патент № 2477620 Степень пареза (баллы) Объем инфаркта (мм3) ФА (индекс, %)
внутр. капсуланожка мозгамост
Пациент К. 531,8 3130 46
Пациент Т.2 37,177 6970

Как видно из Таблицы 4, объемы инфарктов между больными существенно не различались. В то же время показатели ФА (индекс, %) у пациента К. с гемиплегией были значительно ниже пациента Т. с умеренным гемипарезом и установленных пороговых значений, характеризующих необратимость восстановления движений.

Заключение: двигательные нарушения у пациента К. необратимы. Проведение классической реабилитации с целью увеличения объема движений нецелесообразно.

Класс A61B5/055 с применением электронного или ядерного магнитного резонанса (ЯМР), например получение изображения с помощью магнитного резонанса

способ сопроводительного лечения при эндопротезировании крупных суставов -  патент 2527159 (27.08.2014)
способ диагностики панкреатической гипертензии -  патент 2526917 (27.08.2014)
способ дифференциальной диагностики диссекции с формированием интрамуральной гематомы и внутриартериального тромбоза внутренних сонных артерий -  патент 2526267 (20.08.2014)
трансуретральный ультразвуковой датчик для лечения предстательной железы -  патент 2526265 (20.08.2014)
способ комплексного лечения ранних стадий плоскоклеточного рака анального канала -  патент 2524419 (27.07.2014)
сегментация при мр-визуализации сердца в проекции по длинной оси с поздним усилением контраста -  патент 2522038 (10.07.2014)
общий индуктивный ручной блок для активных устройств -  патент 2518540 (10.06.2014)
способ оценки внутричерепного анатомического резерва при дислокации головного мозга -  патент 2517767 (27.05.2014)
система лучевой терапии с контролем в реальном времени методом магнитного ядерного резонанса -  патент 2513222 (20.04.2014)
способ магнитно-резонансной томографии для определения передней нестабильности коленного сустава -  патент 2511400 (10.04.2014)
Наверх