способ получения битума

Классы МПК:C10C3/04 продувкой и(или) окислением 
Автор(ы):, , , , , ,
Патентообладатель(и):ОАО "Средневолжский научно-исследовательский институт по нефтепереработке" (RU)
Приоритеты:
подача заявки:
2010-02-08
публикация патента:

Изобретение относится к области нефтепереработки. Способ включает вакуумную перегонку мазута при остаточном давлении верха колонны 20-30 мм рт.ст. с получением утяжеленного гудрона. Затем разделяют полученный утяжеленный гудрон на два потока, окисляют часть потока кислородом воздуха при температуре 220-230°C с получением продукта, характеризующегося глубиной проникания иглы при 25°C 35-45·0,1 мм. Далее компаундируют окисленный продукт со второй частью утяжеленного гудрона в соотношении от 90:10 до 70:30 до получения продукта с глубиной проникания иглы при 25°C 40-200·0,1 мм. Полученный битум обладает повышенными эксплуатационными характеристиками, в частности, повышенной температурой хрупкости после прогрева, которая характеризует морозоустойчивость асфальтобетонной смеси, и повышенной растяжимостью после прогрева, которая обеспечивает прочность и водостойкость асфальтобетонной смеси. 1 табл., 14 пр.

Формула изобретения

Способ получения битума, включающий вакуумную перегонку мазута с получением утяжеленного гудрона, окисление последнего с получением продукта, характеризующегося глубиной проникания иглы при 25°C 35-45·0,1 мм, отличающийся тем, что вакуумную перегонку мазута производят при остаточном давлении верха колонны 20-30 мм рт.ст. с дальнейшим разделением полученного утяжеленного гудрона на два потока, окисление части потока кислородом воздуха производят при температуре 220-230°C, компаундирование окисленного продукта со второй частью утяжеленного гудрона проводят в соотношении от 90:10 до 70:30 до получения продукта с глубиной проникания иглы при 25°C 40-200·0,1 мм.

Описание изобретения к патенту

Изобретение относится к области нефтепереработки, в частности к способу получения битума. Наиболее широко распространенным способом получения битума является процесс окисления тяжелых остатков нефтепереработки. Качество получаемого битума определяется природой и соотношением компонентов тяжелого остатка, которые зависят от состава исходной нефти, условий процесса ректификационного ее разделения на дистиллятные фракции и тяжелый остаток, условий окисления последнего, а также объема и природы углеводородных добавок, вводимых как в окисляемое сырье, так и в окисленный продукт.

Известен способ получения битума, включающий вакуумную перегонку мазута с получением утяжеленного гудрона, смешение утяжеленного гудрона с модифицирующими добавками и окисление подготовленного гудрона кислородом воздуха при повышенной температуре с получением целевого продукта. При этом при вакуумной перегонке мазута получают утяжеленный гудрон с содержанием парафиновых углеводородов не более 2% мас. и парафино-нафтеновых углеводородов не менее 20% мас. и окислению подвергают 80-90% подготовленного гудрона при температуре 240-270°C. Оставшееся количество подготовленного гудрона вводят в целевой продукт. В качестве модифицирующих добавок используют концентраты полициклических ароматических углеводородов, являющихся продуктами переработки нефти (Пат. РФ 2235109, C10C 3/04, опубл. 27.08.2004).

Недостатком данного способа является, во-первых, то обстоятельство, что для получения утяжеленного гудрона подходит не любой мазут, а лишь такой, который может обеспечить при его вакуумной перегонке содержание парафиновых углеводородов не более 2% мас., а парафино-нафтеновых - не менее 20% мас. Получение такого гудрона представляет собой весьма сложную техническую задачу, поскольку требует, во-первых, проведения детального структурно-группового состава исходного мазута, затем, в соответствии с результатами этого анализа, выбор технологических параметров процесса вакуумной ректификации, а затем вновь анализ структурно-группового состава утяжеленного гудрона. Если еще учесть отсутствие твердо установленных зависимостей между технологическими параметрами процесса вакуумной ректификации и изменением структурно-группового состава в ходе ее проведения, то становится понятным, что предлагаемый в аналоге процесс весьма трудноуправляем и не может обеспечить стабильного качества получаемых продуктов. Другим недостатком известного способа является то, что получаемые согласно ему продукты обладают недостаточной стабильностью при старении, которая характеризуется показателями после прогрева (5 часов, 163°C), а именно эти показатели в конечном счете определяют качество дорожного покрытия и являются вследствие этого особо важными. Причина этого заключается в том, что окисление подготовленного гудрона проводится согласно аналогу до получения продуктов с неоптимальным уровнем пенетрации при 25°C 56-110·0,1 мм. Кроме того, согласно примерам аналога, 2 из 4 марок битума (БДД 90/130 и БДД 40/60) получены окислением подготовленного гудрона без последующего компаундирования с ним, что не позволяет обеспечить высокий уровень качества битума, особенно в части стабильности при старении (т.е. долговечность). Еще одной причиной этого является то обстоятельство, что согласно аналогу не регламентируется давление в колонне вакуумной ректификации, что приводит к образованию значительных количеств карбенов и карбоидов за счет протекания неуправляемых термических процессов, ухудшающих качество битума. Согласно предложенному способу, контроль за составом гудрона осуществляется лишь по трем показателям: содержанию парафинов, парафино-нафтенов и полициклических ароматических углеводородов, что в сумме составляет лишь около 40% от массы гудрона, и что явно недостаточно для контроля за сырьем окисления.

Наиболее близким (прототип) к заявляемому техническому решению является способ получения битума, включающий вакуумную перегонку мазута с получением утяжеленного гудрона при остаточном давлении верха колонны 30-50 мм рт.ст., смешение полученного утяжеленного гудрона с сырьевыми органическими добавками, представляющими собой продукты переработки нефти, в соотношении от 80:20 до 98:2, окисление полученной смеси кислородом воздуха при температуре 230-270°C до получения продукта, характеризующегося глубиной проникания иглы при 25°C 35-45·0,1 мм. Затем окисленный продукт компаундируется со смесью утяжеленного гудрона и сырьевой органической добавки, которая именуется подготовленным гудроном, в соотношении от 80:20 до 90:10 до получения продукта с глубиной проникания иглы при 25°C 50-200·0,1 мм. (Пат. РФ 2276181, C10C 3/04 опубл.10.05.2006, Бюл. № 13).

Недостатком данного способа является то обстоятельство, что в составе товарного битума по предлагаемой технологии невозможно обеспечить оптимальное содержание ароматических углеводородов. Дело в том, что ароматические углеводороды, входящие в состав сырья окисления, являются весьма реакционноспособными веществами и активно окисляются в окислительной колонне. В потоке же подготовленного гудрона, поступающего на компаундирование с продуктом окисления для получения товарного битума, содержится лишь около 30% мас. ароматических углеводородов, в связи с чем с компаундирующим потоком неизбежно введение в состав битума нецелевых компонентов, снижающих качество товарного продукта.

Задачей изобретения является разработка способа получения битума, отличающегося повышенными эксплуатационными характеристиками, в особенности, после старения, использования мазутов любого структурно-группового состава и повышения эффективности воздействия условий процесса на качество получаемого битума.

Для решения поставленной задачи предлагается способ получения битума, включающий вакуумную перегонку мазута с получением утяжеленного гудрона при остаточном давлении верха колонны 20-30 мм рт.ст., разделение полученного утяжеленного гудрона на два потока, первый из которых поступает в колонну окисления, а второй смешивается с полученным в этой колонне окисленным гудроном с образованием товарного битума. Массовое соотношение окисленного продукта и утяжеленного гудрона варьируется от 90:10 до 70:30 до получения продукта с глубиной проникания иглы при 25°C 40-200·0,1 мм в зависимости от марки товарного битума. Таким образом оказывается возможным из одного и того же утяжеленного гудрона получать битумы всех возможных марок. Температура окисления поддерживается на уровне 220-230°C. Окисление производят до получения продукта, характеризующегося глубиной проникания иглы при 25°C 35-45·0,1 мм.

Отличие заявляемого технического решения от известного заключается, во-первых, в том, что на смешение с окисленным в колонне продуктом направляется не подготовленный гудрон, представляющий собой смесь гудрона с углеводородной добавкой, а утяжеленный гудрон в необходимом массовом соотношении к окисленному гудрону. Во-вторых, для каждой марки товарного битума регламентируется соотношение гудрона, поступающего на окисление, к гудрону, поступающему на смешение с окисленным гудроном, что повышает возможности эффективного регулирования качества получаемого битума.

Это позволяет, независимо от структурно-группового состава исходного мазута после компаундирования окисленного продукта с утяжеленным гудроном в массовом соотношении от 90:10 до 70:30 до получения продукта с глубиной проникания иглы при 25°C 40-200·0,1 мм гарантированно получать товарный битум с улучшенной растяжимостью и повышенными показателями качества после старения. Регламентация соотношения потоков, направляемых на окисление и на смешение с окисленным гудроном, позволяет получить товарный продукт с необходимым уровнем пенетрации для каждой марки битума. Это обеспечивает высокую управляемость процесса и стабильность качества битума. Весьма важным представляется соблюдение такого технологического параметра, как остаточное давление верха вакуумной колонны, равное 20-30 мм рт.ст. Более низкое по сравнению с прототипом остаточное давление дает возможность получить из мазута дополнительное количество вакуумного газойля - ценного сырья каталитического крекинга, и позволяет получить гудрон с условной вязкостью при 80°C ВУ80 70-80с, в то время, как при остаточном давлении верха вакуумной колонны, равном 30-50 мм рт.ст. получается гудрон с BУ80 30-70с. Другое отличие предлагаемого способа от прототипа заключается в том, что процесс окисления производится при более низкой температуре 220-230°C по сравнению с 230-270°C по прототипу. Это оказывается возможным, поскольку в гудроне с ВУ80 70-80с содержится в 1,3 раза больше асфальтенов и тяжелых полициклических ароматических соединений, для образования которых и требуется высокая температура при окислении низковязких гудронов. Таким образом, значительная часть компонентов, обычно образующихся в процессе окисления и обеспечивающих высокую растяжимость, уже содержится в исходном гудроне. С другой стороны, в гудроне с BУ80 70-80с содержится на 20% меньше парафино-нафтеновых углеводородов, снижающих растяжимость. Кроме того, скорость окисления гудронов с ВУ80 70-80с в 2-2,5 раза выше, чем скорость окисления гудронов BУ80 30-70с. Все это позволяет снизить температуру окисления до 220-230°С. Это приводит как к снижению энергозатрат, так и обеспечивает более высокое содержание ароматических углеводородов, поскольку они наиболее активно (обычно с конверсией до 60%) вступают в реакцию окисления. Тот факт, что они в достаточном количестве содержатся в окисленном гудроне, делает возможным исключить стадию введения высокоароматизированных продуктов в окисленный гудрон и, тем самым, существенно упростить процесс.

Предлагаемый способ иллюстрируется следующими примерами (Таблица).

Примеры 1-4 осуществляются в условиях согласно прототипу.

Пример 5. Мазут, полученный при переработке западно-сибирских нефтей, нагревают в трубчатой печи до 400°C и подвергают вакуумной перегонке при остаточном давлении 20 мм рт.ст. Отобранный из куба колонны утяжеленный гудрон обладает следующими физико-химическими характеристиками:

1. Плотность при 20°C, г/см3 0,970
2. Температура размягчения по КиШ, °C 40
3. Вязкость условная при 80°C, с 80
4. Температура вспышки, °C 255
5. Пенетрация при 25°C, 0,1 мм 460

Полученный утяжеленный гудрон поступает в окислительную колонну, где происходит процесс окисления в следующих условиях:

1. Температура, °C

- сырья на входе в колонну 180-210
- воздуха50
- верха колонны 200
- низа колонны220-230

2. Расход, м 3/час

- сырья35
- воздуха 1700-2100

3. Выход битума на сырье, % мас. 99

4. Время пребывания массы в окислительной колонне 1,0 час.

Получаемый после окисления продукт имеет следующие характеристики:

Пенетрация при 25°C, 0,1 мм 42
Температура размягчения по КиШ, °C 55

Окисленный продукт компаундируется многократной циркуляцией при температуре 100-150°C. Массовое соотношение окисленный продукт:утяжеленный гудрон равно 90:10. Получаемый битум имеет показатели качества, приведенные в таблице.

Примеры 6-12: способ осуществляют при технологических параметрах, аналогичных примеру 5. Условия получения битума и качество товарного продукта приведены в таблице. Примеры 5-12 позволяют получать улучшенные битумы, превосходящие по качеству битумы, полученные по способу согласно прототипу. В первую очередь, это касается таких показателей, как качество битума марки БНД 60/90 по растяжимости при 25°C после прогрева.

Величина растяжимости является важным показателем качества битума, характеризующим его пластичность. Незначительное изменение величины этого показателя после прогрева также очень важно, так как свидетельствует о сохранении пластических свойств битума в процессе старения. Небольшое изменение температуры размягчения (Тразм.) после прогрева означает, что текучесть битумов после температурного воздействия практически не изменяется.

Примеры по предлагаемому изобретению имеют лучшие показатели в сравнении с прототипом не только по остаточной пенетрации, но и по температуре хрупкости после прогрева, которая характеризует морозоустойчивость асфальтобетонной смеси и по растяжимости после прогрева, которая обеспечивает прочность и водостойкость асфальтобетонной смеси.

Эксперименты, приведенные в примерах 13-14 проведены в неоптимальных условиях.

При повышении остаточного давления в вакуумной колонне снижается условная вязкость утяжеленного гудрона. Как отмечалось выше, скорость окисления менее вязких гудронов снижается в несколько раз. В низковязком гудроне в избыточном количестве присутствуют парафино-нафтеновые соединения. В случае превышения остаточного давления в вакуумной колонне свыше 30 мм рт.ст. невозможно получить вакуумный гудрон с условной вязкостью ВУ80 выше 70с, содержание ароматических соединений в котором достигало бы 35% мас., а содержание парафино-нафтеновых углеводородов не превышало бы 20% мас. (в этом случае их взаимное массовое соотношение равно 1,75 к 1,0). Экспериментально установлено, что понижение этого соотношения в гудроне менее 1,7 приводит после его окисления к получению битума марки 40/60 с растяжимостью при 25°C менее 100 см, то есть не соответствующего стандарту. Изменение температуры размягчения (Тразм.) после прогрева также оказывалось слишком высоким. В связи с тем, что ароматические углеводороды являются наиболее окисляемыми углеводородами, а их присутствие является необходимым для обеспечения функциональных свойств битума превышение остаточного давления в вакуумной колонне свыше 30 мм рт.ст. недопустимо. Обеспечение в указанных условиях достаточного содержания ароматических углеводородов позволяет снизить температуру окисления до 220-230°C. Ароматические углеводороды, являясь, как известно, наиболее легко окисляемыми углеводородными компонентами, в условиях более мягкого процесса окисления будут вступать в реакцию с наименьшей степенью превращения. Снижение остаточного давления ниже 20 мм рт.ст. нецелесообразно в связи с увеличением энергозатрат на создание вакуума.

Другим важным параметром, обеспечивающим получение качественного битума, является величина температуры в окислительной колонне. Превышение величины температуры свыше 230°C при условии, что окислению подвергается утяжеленный гудрон с условной вязкостью BУ80 выше 70с, полученный при величине остаточного давления в вакуумной колонне не свыше 30 мм рт.ст., приводит к увеличенной по сравнению с оптимальной величине степени превращения ароматических углеводородов как наиболее легко окисляемых. Как уже отмечалось ранее, окисленный битум марки 40/60 с недостаточным содержанием ароматических углеводородов обладает растяжимостью при 25°C менее 100 см, то есть не соответствует стандарту. Изменение температуры размягчения (Тразм.) после прогрева также оказывалось слишком высоким.

Снижение температуры в окислительной колонне ниже 220°C при условии, что окислению подвергается утяжеленный гудрон с условной вязкостью ВУ80 выше 70 с, полученный при величине остаточного давления в вакуумной колонне не свыше 30 мм рт.ст., приводит к увеличенной по сравнению с оптимальной величине массового соотношения ароматических соединений и парафино-нафтеновых углеводородов. Дело в том, что превышение этого соотношения выше 1,7 к 1,0 хотя и сопровождается увеличением растяжимости, но при этом повышает температуру хрупкости до неприемлемо высокого уровня.

При повышении массовой доли окисленного продукта по отношению к утяжеленному гудрону выше 90:10 (пример 13) величина глубины проникания иглы понижается до 38-0,1 мм, по этому параметру продукт не соответствует нормам ГОСТа (не менее 40·0,1 мм). Напротив, при понижении массовой доли окисленного продукта по отношению к утяжеленному гудрону очистки масел ниже 70:30 (пример 14) величина глубины проникания иглы повышается до 217. В результате по этому параметру продукт не соответствует нормам ГОСТа (не более 200·0,1 мм).

способ получения битума, патент № 2476580

Класс C10C3/04 продувкой и(или) окислением 

способ получения изотропного пекового полукокса -  патент 2520455 (27.06.2014)
способ получения пека-связующего для электродных материалов -  патент 2517502 (27.05.2014)
способ получения битума из нефтесодержащих отходов -  патент 2515471 (10.05.2014)
установка для получения олигомерного наноструктурированного битума -  патент 2509797 (20.03.2014)
способ получения олигомерного битума -  патент 2509796 (20.03.2014)
устройство для получения битума -  патент 2499813 (27.11.2013)
сульфоаддукт нанокластеров углерода и способ его получения -  патент 2478117 (27.03.2013)
газожидкостный реактор для получения окисленных нефтяных битумов -  патент 2471546 (10.01.2013)
способ получения битума -  патент 2458965 (20.08.2012)
способ получения битума -  патент 2427606 (27.08.2011)
Наверх