способ получения модификатора для доэвтектических алюминиево-кремниевых сплавов

Классы МПК:B22F3/20 выдавливанием (экструзией)
C22C1/06 с применением особых средств для рафинирования или раскисления 
B22F1/00 Специальная обработка металлических порошков, например для облегчения обработки, для улучшения свойств; металлические порошки как таковые, например смеси порошков различного состава
C22C21/04 модифицированные алюминиево-кремниевые сплавы 
Автор(ы):,
Патентообладатель(и):Учреждение Российской академии наук Институт вычислительного моделирования Сибирского отделения Российской академии наук (ИВМ СО РАН) (RU)
Приоритеты:
подача заявки:
2011-06-02
публикация патента:

Изобретение относится к литейному производству, в частности к модифицированию литейных алюминиево-кремниевых сплавов доэвтектического состава. Модификатор в виде прутка получают путем смешивания алюминиевого порошка с размерами частиц 0,5-0,7 мм и ультрадисперсного порошка нитрида титана TiN со средним размером частиц порядка 40 нанометров в планетарной мельнице в течение 5 минут при 400 об/мин и прессования полученной композиции в пруток. Способ позволяет получать пруток для модифицирования с повышенным содержанием ультрадисперсного порошка нитрида титана. 2 табл., 1 пр.

Формула изобретения

Способ получения модификатора для доэвтектических алюминиево-кремниевых сплавов путем смешивания порошка алюминия с размером частиц 0,5-0,7 мм и ультрадисперсного порошка нитрида титана TiN со средним размером частиц порядка 40 нм в планетарной мельнице в течение 5 мин при 400 об/мин и прессования полученной композиции в пруток.

Описание изобретения к патенту

Предлагаемое изобретение относится к литейному производству, а именно к модифицированию доэвтектических алюминиево-кремниевых сплавов.

Известен «Способ изготовления модификатора для доэвтектических алюминиево-кремниевых сплавов» [Патент CN 101538666 А, С22С 1/00], включающий следующие операции: в графитовый тигель, нагретый в электрической печи сопротивления до 450-550°С, загружается чушковый алюминий. Затем насыпается слой сухого покровного агента, содержащего, вес.%: 50% NaCl и 50% KCl, производится нагрев до 760-800°С, после чего в расплавленный алюминий вводятся поочередно чушка сурьмы, вес которой составляет 5-15% от веса всего модификатора, чушка иттрия, вес которой составляет 1-2% от веса всего модификатора, и чушка магния, вес которой составляет 1-2% от веса всего модификатора. После чего жидкий металл выдерживается при этой температуре 20-30 минут; затем его перемешивают графитовым прутком высокой чистоты, затем в течение 2-5 мин, вводят аргон из положения на 8-15 мм от донной части жидкого металла при скорости потока 8-20 мл/сек; очищают металл и заливают его в металлическую форму, где он охлаждается до комнатной температуры.

Недостатками способа являются:

1) большая длительность процесса приготовления модификатора, связанная:

а) с необходимостью поочередного выполнения операций загрузки компонентов;

б) с выдержкой металла до 20-30 мин при температуре 760-800°С;

2) высокая температура плавления иттрия (+1528°С), более чем в два раза превышающая температуру плавления других компонентов модификатора - алюминия (+660°С), сурьмы (+630,5°С) и магния (+651°С), в связи с чем для его полного растворения фактически должно требоваться или более длительная выдержка расплава при указанной температуре (760-800°С), или ее значительное повышение; кроме того, на воздухе иттрий покрывается плотной защитной окисной пленкой Y2O3, температура плавления которой составляет 2451°С, в связи с чем для обеспечения растворения иттрия его необходимо или хранить без контакта с воздушной средой, или тщательно очищать перед загрузкой в расплав, причем, как правило, очистка шихтовых материалов от окислов производится с помощью жидких химических средств, например травлением в кислотах;

3) невозможность точного соблюдения расстояния места введения аргона (8-15 мм от дна плавильного тигля), что практически невозможно точно измерить в жидком металле; кроме того, введение аргона должно производится через трубку из какого-то материала - графит, кварц, металл - которые могут взаимодействовать с жидким металлом, загрязняя его.

4) применение при приготовлении модификатора входящие в состав покровного агента (флюса) соли NaCl и 50% KCl приводят к преждевременному разрушению плавильной емкости; кроме того, указанные соли NaCl и 50% KСl обладают высокой гигроскопичностью, в связи с чем их необходимо хранить перед употреблением в сушильном шкафу с целью предотвращения насыщения влагой и попадания ее в жидкий металл при модифицировании, что вызывает появление пористости в отливках и снижения их механических свойств.

Наиболее близким по технической сущности является «Способ модифицирования литейных алюминиевых сплавов эвтектического типа» [А.с. СССР № 831840, С22С 1/06. Опубл. 23.05.1981], включающий рафинирование сплава АЛ2 гексахлорэтаном C2Cl6 с последующим модифицированием модификатором (45,0% NaCl + 40% NaF + 15% Na 3AlF6 - в тексте описания А.с. 831840 ошибочно написано Na3Al3F6) и введения в него ультрадисперсного порошка карбида бора B4C (получен методом плазмохимического синтеза) в количестве 0,05-0,08% от массы сплава в объеме прутка, отпрессованного из алюминиевых гранул, обсыпанных карбидом бора В4С.

Недостатками способа являются:

1) достаточно высокая длительность процесса приготовления сплава в связи с необходимостью выполнения трех последовательных операций: рафинирование способ получения модификатора для доэвтектических алюминиево-кремниевых   сплавов, патент № 2475334 обработка расплава модификатором введение в расплав ультрадисперсного порошка карбида бора В4С в объеме прутка, отпрессованного из этого порошка и алюминиевых гранул, так как при их выполнении и между их проведением требуется определенная выдержка;

2) излишний расход электроэнергии в связи с длительностью выполнения указанных в п.1 трех операций,

3) воздействие содержащихся в модификаторе солей на плавильную емкость, что приводит к ее преждевременному разрушению;

4) гигроскопичность солей, входящих в состав модификатора, что требует его хранения перед употреблением в сушильном шкафу с целью предотвращения насыщения влагой и попадания ее в жидкий металл при модифицировании, что вызывает появление пористости в отливках и снижения их механических свойств.

5) необходимость расходования достаточно большого количества прутка, так как в его объеме содержится всего 1,5способ получения модификатора для доэвтектических алюминиево-кремниевых   сплавов, патент № 2475334 2,7 мас.% ультрадисперсного порошка [Крушенко Г.Г., Фильков М.Н. Модифицирование алюминиевых сплавов нанопорошками // Нанотехника, 2007. - № 4. - С.58-64], и для введения в расплав требуемого его количества даже на нижнем пределе (0,05-0,08 мас.% от массы сплава) при диаметре применяемого прутка, равном 9,5 мм, требуется 20-25 кг прутка для модифицирования объема расплава, равного 1 тонне.

6) существенное отличие параметров кристаллических решеток алюминия и ультрадисперсного порошка В4С (Таблица 1), частицы которого должны служить центрами кристаллизации алюминиевой фазы, что затрудняет процесс зарождения этой фазы.

Задачей предлагаемого изобретения является разработка способа изготовления прутка, содержащего повышенное количество ультрадисперсного порошка.

Поставленная цель достигается тем, что пруток прессовали из композиции, состоящей из алюминиевого порошка и ультрадисперсного порошка нитрида титана TiN после их смешивания в планетарной мельнице.

В качестве ультрадисперсного порошка был выбран порошок нитрида титана TiN со средним размером частиц порядка 40 нанометров, полученный методом плазмохимического синтеза [Плазмохимический синтез ультрадисперсных порошков и их применение для модифицирования металлов и сплавов / В.П.Сабуров, А.Н.Черепанов, М.Ф.Жуковспособ получения модификатора для доэвтектических алюминиево-кремниевых   сплавов, патент № 2475334 Г.Г.Крушенко и др. // Новосибирск: Наука. Сибирская издательская фирма РАН, 1995. - 344 с.]), в связи с тем, что его применение в качестве модификатора в наибольшей степени позволило повысить и получить стабильные механические свойства отливок типа «обтекатель», к эксплуатационным характеристикам которых предъявляются повышенные требования [Крушенко Г.Г. Модифицирование доэвтектического алюминиево-кремниевого сплава нанопорошком нитрида титана при литье сложнонагруженных деталей транспортного средства // Технология машиностроения. - 2008. - № 11. - С.5-7].

При этом следует отметить, что тип кристаллической решетки и параметры кристаллической решетки соединения В4С, используемого в [А.с. СССР № 831840, С22С 1/06. Опубл. 23.05.1981], существенно отличаются от таковых для алюминия (Таблица 1), с формирования которого в виде дендритов способ получения модификатора для доэвтектических алюминиево-кремниевых   сплавов, патент № 2475334 -твердого раствора начинается кристаллизация сплава, и для которого частицы соединения В4С являются центрами кристаллизации. Согласно известному и общепризнанному принципу ориентационного и размерного соответствия, сформулированному П.Д.Данковым (например Данков П.Д. Кристаллохимический механизм взаимодействия поверхности кристалла с чужеродными элементарными частицами // ЖФХ. - 1946. - Т.20, Вып.8. - С.853-867), кристаллическая решетка возникающей фазы ориентируется относительно исходной фазы таким образом, чтобы между расположением атомов в обеих решетках было максимальное сходство и чтобы атомы новой решетки претерпевали минимальные смещения.

При несовпадении этих параметров у компонентов, которые вводятся в качестве центров кристаллизации, и зарождаемой фазы, эффективность зарождения снижается.

Из таблицы 1 видно, что кристаллические решетки нитрида титана TiN и алюминия относятся к одному и тому же типу (кубическая гранецентрированная), тогда как кристаллическая решетка карбида бора В4С и алюминия - к разным типам (соответственно ромбоэдрическая и кубическая гранецентрированная), а параметры кристаллической решетки нитрида титана TiN (способ получения модификатора для доэвтектических алюминиево-кремниевых   сплавов, патент № 2475334 =0,4249) и алюминия (способ получения модификатора для доэвтектических алюминиево-кремниевых   сплавов, патент № 2475334 =4,0413) достаточно близки, что соответствует принципу ориентационного и размерного соответствия, тогда как для соединения В4С и алюминия они существенно отличаются.

Кроме того, температура плавления нитрида титана TiN (3223 К) на 500 К больше, чем температура плавления карбида бора В 4С (2723 К), что обеспечивает более длительное существование частиц TiN в жидком сплаве.

С целью увеличения количества ультрадисперсного порошка в объеме прутка в качестве алюминиевого компонента использовали алюминиевый порошок с размерами частиц 0,5способ получения модификатора для доэвтектических алюминиево-кремниевых   сплавов, патент № 2475334 0,7 мм, суммарная площадь поверхности которых в одном и том же объеме значительно превосходит таковую, если пруток прессуют при использовании гранул, размер которых составляет 1,5-3,0 мм [Крушенко Г.Г., Фильков М.Н. Модифицирование алюминиевых сплавов нанопорошками // Нанотехника, 2007. - № 4. - С.58-64], что позволяет плакировать ультрадисперсным порошком значительно большую площадь поверхности.

Пример. Композицию, состоящую из алюминиевого порошка и ультрадисперсного порошка нитрида титана TiN в разном их соотношении, загружали в стакан планетарной мельницы совместно со стальными шариками диаметром 10,0 мм и приводили ее в действие на 5 минут при 400 об/мин. Обработанную композицию прессовали в прутки разного диаметра при усилии прессования 20способ получения модификатора для доэвтектических алюминиево-кремниевых   сплавов, патент № 2475334 23 тонны. В результате были получены прутки, содержащие порядка 7,7% ультрадисперсного порошка нитрида титана TiN.

Эффективность модифицирующего воздействия проверяли с применением прутков диаметром 6,0 мм при литье алюминиево-кремниевого сплава АК12 (Al+10,0-13% Si+0,01-0,5% Мn).

После доведения температуры расплава в интервале 720-730°С проводили его рафинирование гексахлорэтаном С2Cl6 , после чего в расплав вводили пруток, содержащий ультрадисперсный порошок нитрида титана TiN.

При этом было установлено, что для введения необходимого для модифицирования количества порошка (0,05-0,08 мас.% от массы сплава) требуется по массе прутка, изготовленного по заявляемому способу (содержание порошка - 7,7 мас.%), в 3,6 раза меньше по сравнению со способом изготовления прутков по А.с. СССР № 831840, С22С 1/06 (содержание порошка 1,5способ получения модификатора для доэвтектических алюминиево-кремниевых   сплавов, патент № 2475334 2,7 мас.%, в среднем - 2,1 мас.%).

Испытания показали, что механические свойства сплава, модифицированного прутком, содержащим 7,7 мас.% нитрида титана TiN, оказались выше, чем при модифицировании прутком, содержащим 1,5способ получения модификатора для доэвтектических алюминиево-кремниевых   сплавов, патент № 2475334 2,7 мас.% порошка В4С по А.с. 831840 (Таблица 2).

Таблица 1

Характеристики кристаллической структуры карбида бора В4С, карбида титана TiN и алюминия [Нараи-Сабо И. Неорганическая кристаллохимия. - Будапешт: Изд. АН Венгрии, 1969. - 504 с.]
Характеристика Соединение
способ получения модификатора для доэвтектических алюминиево-кремниевых   сплавов, патент № 2475334 В4 СTiN А1
Кристаллическая системаРомбоэдрическая кубическая гранецентрированная кубическая гранецентрированная
Параметры решетки, нм:способ получения модификатора для доэвтектических алюминиево-кремниевых   сплавов, патент № 2475334 способ получения модификатора для доэвтектических алюминиево-кремниевых   сплавов, патент № 2475334 способ получения модификатора для доэвтектических алюминиево-кремниевых   сплавов, патент № 2475334
а0,561 0,42494,0413
b -- -
с 1,212 --
Температура плавления, К2723 3223933

Таблица 2

Влияние вида ультрадисперсного порошка на механические свойства сплава АК12
Вид ультрадисперсного порошка Механические свойства
Предел прочности (временное сопротивление)способ получения модификатора для доэвтектических алюминиево-кремниевых   сплавов, патент № 2475334 в Относительное удлинение, способ получения модификатора для доэвтектических алюминиево-кремниевых   сплавов, патент № 2475334 , %Твердость
В4 С по А.с. 831840 23,5 кгс/мм2=235 МПа 10,564,1 кгс/мм 2=641 МПа
TiN по заявке240-245 (ср.-242,5 МПа) 10,9-12,3 (ср.-11,6) 645-650 (ср.-647,5 МПа)
По ГОСТ1583-93 при литье в кокиль 157 МПа2,0 500 МПа

Скачать патент РФ Официальная публикация
патента РФ № 2475334

patent-2475334.pdf

Класс B22F3/20 выдавливанием (экструзией)

пресс-инструмент для проходного прессования порошковых материалов -  патент 2529329 (27.09.2014)
способ получения модификатора для алюминиевых сплавов -  патент 2528598 (20.09.2014)
способ получения композиционного материала -  патент 2509818 (20.03.2014)
способ получения контактных вставок троллейбусов -  патент 2508177 (27.02.2014)
способ экструзии термоэлектрического материала на основе халькогенидов висмута и сурьмы -  патент 2475333 (20.02.2013)
содержащие связующее термопластичные массы для изготовления металлических формованных изделий -  патент 2446031 (27.03.2012)
способ получения керамических изделий с наноразмерной структурой -  патент 2414991 (27.03.2011)
способ получения композиционного материала на металлической матрице, армированной квазикристаллами -  патент 2413781 (10.03.2011)
способ получения высокотемпературного металлического композиционного материала на основе интерметаллида молибдена -  патент 2410201 (27.01.2011)
разжимная пресс-шайба -  патент 2359769 (27.06.2009)

Класс C22C1/06 с применением особых средств для рафинирования или раскисления 

Класс B22F1/00 Специальная обработка металлических порошков, например для облегчения обработки, для улучшения свойств; металлические порошки как таковые, например смеси порошков различного состава

способ изготовления скользящих контактов -  патент 2529605 (27.09.2014)
композиция, улучшающая обрабатываемость резанием -  патент 2529128 (27.09.2014)
способ подготовки шихты порошковой проволоки и устройство для определения угла естественного откоса порошковых материалов -  патент 2528564 (20.09.2014)
способ приготовления твердосплавной шихты с упрочняющими частицами наноразмера -  патент 2525192 (10.08.2014)
способ получения диффузионно-легированного порошка железа или порошка на основе железа, диффузионно-легированный порошок, композиция, включающая диффузионно-легированный порошок, и прессованная и спеченная деталь, изготовленная из упомянутой композиции -  патент 2524510 (27.07.2014)
способ получения многослойного композита на основе ниобия и алюминия с использованием комбинированной механической обработки -  патент 2521945 (10.07.2014)
способ получения модифицированных наночастиц железа -  патент 2513332 (20.04.2014)
способ получения дисперсноупрочненной высокоазотистой аустенитной порошковой стали с нанокристаллической структурой -  патент 2513058 (20.04.2014)
порошковая ферромагнитная композиция и способ ее получения -  патент 2510993 (10.04.2014)
смазка для композиций порошковой металлургии -  патент 2510707 (10.04.2014)

Класс C22C21/04 модифицированные алюминиево-кремниевые сплавы 

Наверх