способ получения нанокристаллического кремния

Классы МПК:C01B33/02 кремний
B82B3/00 Изготовление или обработка наноструктур
C30B29/06 кремний
B82Y30/00 Нано-технология материалов или поверхностных эффектов, например нано-композиты
Автор(ы):, ,
Патентообладатель(и):Асланов Леонид Александрович (RU),
Захаров Валерий Николаевич (RU),
Савилов Сергей Вячеславович (RU)
Приоритеты:
подача заявки:
2011-05-26
публикация патента:

Изобретение относится к нанотехнологиям в области химии. Способ включает взаимодействие соединения кремния тетраэтилортосиликата с восстановителем - боргидридом натрия в присутствии ионной жидкости, содержащей катион диалкилимидозолия, в среде органического растворителя и отделение образовавшихся наночастиц кремния. В качестве ионной жидкости может быть использован 1,3-диметилимидазолий йодид, в качестве органического растворителя - диглим. Взаимодействие проводят в атмосфере инертного газа. Изобретение обеспечивает получение нанокристаллического кремния в отсутствии галогенидов кремния и металлического натрия в условиях гомогенного протекания реакции. Способ технологичен и хорошо воспроизводим. 3 з.п. ф-лы, 3 ил., 1 пр.

способ получения нанокристаллического кремния, патент № 2471709 способ получения нанокристаллического кремния, патент № 2471709 способ получения нанокристаллического кремния, патент № 2471709

Формула изобретения

1. Способ получения нанокристаллического кремния, включающий взаимодействие соединения кремния с восстановителем в присутствии ионной жидкости, содержащей катион диалкилимидозолия, в среде органического растворителя и отделение образовавшихся наночастиц кремния, отличающийся тем, что в качестве соединения кремния на взаимодействие подают тетраэтилортосиликат, в качестве восстановителя используют боргидрид натрия.

2. Способ по п.1, отличающийся тем, что в качестве ионной жидкости используют 1,3-диметилимидазолий йодид.

3. Способ по п.1, отличающийся тем, что в качестве органического растворителя используют диглим.

4. Способ по п.1, отличающийся тем, что взаимодействие проводят в атмосфере инертного газа.

Описание изобретения к патенту

Изобретение относится к области неорганической химии и нанотехнологии и может быть использовано при получении нанокристаллического кремния.

Известны способы получения нанокристаллического кремния, основанные на восстановлении галогенидов кремния водородом, осуществляемые в газовой фазе (см. например, US 7091138, 15.08.2006, US 7758839, 20.07.2010).

Получаемые такими способами наночастицы кремния могут содержать на своей поверхности галогенидные лиганды, которые придают нанокремнию способность гидролизоваться в присутствии влаги воздуха.

Известно получение наночастиц кремния из жидкой фазы в электрохимической ячейке при использовании кремниевого анода (US 6585947 01.07.2003).

Известный способ является довольно дорогим.

Описан способ получения нанокристаллического кремния, согласно которому проводят спекание при температуре около 800 К тонкоизмельченного силицида магния и аэросила с последующим растворением и вымыванием оксида магния в подкисленном водном растворе, и с последующей очисткой нанокристаллического кремния осаждением этанолом и растворением в трихлорметане (RU 2411613, 10.02.2011).

Однако данный способ является многостадийным, что приводит к низкому выходу целевого продукта.

Наиболее близким по технической сущности и достигаемому результату является способ получения нанокристаллического кремния, включающий восстановление тетрагалогенсилана щелочным металлом в присутствии ионной жидкости на основе соединения, содержащего катион дизамещенного имидазолия, с последующим отделением образовавшейся дисперсии кремниевых наночастиц (RU 2415079, 27.03.2011).

Недостатком известного способа является сложность его осуществления и нестабильность процесса из-за использования гигроскопичных галогеносиланов, а также из-за того, что восстановление протекает в гетерогенной среде на границе разделе фаз.

Задачей настоящего изобретения является разработка простого и надежного способа получения нанокристаллического кремния в гомогенной среде без использования сильнодымящих тетрагалогенсиланов и обладающего хорошей воспроизводимостью.

Поставленная задача решается описываемым способом получения нанокристаллического кремния, который включает взаимодействие соединения кремния - тетраэтилортосиликата с восстановителем - боргидридом натрия в присутствии ионной жидкости, содержащей катион диалкилимидозолия, в среде органического растворителя и последующее отделение образовавшихся наночастиц кремния.

Предпочтительно, в качестве ионной жидкости используют 1,3-диметилимидазолий йодид.

Предпочтительно, в качестве органического растворителя используют диглим.

Предпочтительно, взаимодействие проводят в атмосфере инертного газа.

В объеме вышеприведенной совокупности признаков достигается заявленный технический результат, заключающийся в том, что нами разработан хорошо воспроизводимый синтез нанокремния из безгалоидного кремнийсодержащего сырья. Используемый тетраэтилортосиликат (ТЭОС) является довольно инертным химическим соединением, он лишь гидролизуется в условиях кислотного катализа, и, как мы экспериментально установили, ТЭОС не реагирует с NaBH4. С другой стороны, NaBH4 не восстанавливает ионы имидазолия до N-гетероциклического карбена, но обеспечивает восстановление смеси растворов ТЭОС и диалкилимидазолий йодида, что приводит к стабильному протеканию реакции с получением нанокристаллического кремния.

Дополнительным преимуществом способа является то, что используемое сырье ТЭОС является достаточно дешевым продуктом, так как данное соединения является побочным продуктом при получении силана безгалоидным способом.

Выбор других исходных соединений для осуществления способа обусловлен следующим.

В качестве органического растворителя предпочтительно использование диглима из-за хорошей растворимости в нем боргидрида натрия. Взаимодействие смеси ТЭОС'а и ионной жидкости, содержащей катион диалкилимидозолия, в частности в виде 1,3-диметилимидазолий йодида (mmimJ), с NaBH4 в отсутствие обособленных реакций ТЭОС'а или mmimJ с NaBH 4 обусловлено кислотно-основными и окислительно-восстановительными взаимодействиями. Алкоголят-ион является сильным основанием, сопоставимым по силе с карбеном, и в присутствии NaBH4 реализуется образование карбена с одновременным образованием спирта, причем карбен образует связи C-Si с поверхностными атомами наночастиц кремния, формирующихся под действием восстановителя - NaBH4. Восстанавливает ТЭОС до кремния натриевая часть боргидрида, а ВН3 образует донорно-акцепторные связи с атомами кислорода диглима и при воздействии влаги воздуха образует борную кислоту с выделением водорода, что было обнаружено экспериментально. Побочным продуктом реакции является NaJ.

Предложенное изобретение поясняется с помощью следующих иллюстраций.

На фиг.1 представлен снимок, показывающий ПЭМ-изображение конгломерата полученных наночастиц кремния.

На фиг.2 представлено ПЭМ-изображение наночастицы кремния.

На фиг.3 представлены спектры люминесценции и возбуждения дисперсии нанокремния в присутствии воды.

Ниже приведен конкретный пример осуществления заявленного способа и описаны характеристики полученного целевого продукта.

Ионную жидкость (ИЖ) состава 1,3-диметилимидозолий иодид (MmimJ) в количестве от 2,3 до 6 ммоль и NaBH4 в количестве от 2,1 до 3,5 ммоль растворяют в диглиме в количестве от 8 до 20 мл при 90°С. (Диглим выбран в качестве растворителя, потому что в нем хорошо растворяется NaBH4 - 24 г на 100 г диглима при 25°С). К смеси добавляют жидкий ТЭОС в количестве от 1,0 до 1,5 ммоль. Реакцию проводят в сосуде Шленка с обратным холодильником и магнитной мешалкой в атмосфере аргона или иного инертного газа в течение 1,5-3 часов. Через полчаса после начала реакции раствор желтеет, и интенсивность окраски увеличивается по мере протекания реакции. Через 3 часа реакционная смесь приобретает желто-красный оттенок. Скорость реакции зависит от концентрации NaBH4. После окончания взаимодействия отделяют дисперсию наночастиц от твердой фазы. Размер кристаллов кремния в дисперсии составил 4-7 нм.

Фотолюминесценция у полученной дисперсии нанокремния практически отсутствует, но после добавления ¼ объема воды или метилового спирта возникает яркая фотолюминесценция с максимумом при способ получения нанокристаллического кремния, патент № 2471709 =483 нм (см. фиг.3). Так как вода и спирт взаимодействуют с кремнием, то можно сделать вывод, что фотолюминесцируют поверхностные состояния нанокремния.

Аналогичным образом осуществлено получение нанокремния с использованием других доступных ионных жидкостей, содержащих катион диалкилимидозолия, и, в частности, с соединениями общей формулы (R1-NC3H 3N-R2)+, где R1 выбран из алкилов C16, a R2 выбран из алкилов C16 или фенила, т.е. с теми же соединениями, которые использовались в способе по прототипу. Реакция протекала так же, как описано выше, а характеристики полученного целевого продукта были аналогичны приведенным на фиг.1 -3.

Из фиг.1 следует, что полученные наночастицы кремния (о чем можно судить по данным спектроскопии энергетических потерь электронов - 105 eV для полосы Si-L2.3), расположены дискретно, имеют размер кристаллов 4-7 нм и не демонстрируют тенденции к агломерации.

На фиг.2 показано межплоскостное расстояние (около 1,919±А), что свидетельствует о принадлежности полученных наночастиц к кремнию.

Таким образом, предложенный способ получения нанокристаллического кремния в объеме заявленной совокупности признаков протекает в гомогенной среде, что выгодно отличает его от гетерогенного восстановления соединений кремния на границах раздела с капельками щелочных металлов, который описан в прототипе.

Заявленный способ характеризуется хорошей воспроизводимостью и высокой технологичностью.

Класс C01B33/02 кремний

способ получения полупроводниковых наночастиц, заканчивающихся стабильным кислородом -  патент 2513179 (20.04.2014)
способ получения материала, содержащего фуллерен и кремний -  патент 2509721 (20.03.2014)
способ получения гранул кремния высокой чистоты -  патент 2477684 (20.03.2013)
способ десорбции кремния с анионитов -  патент 2456237 (20.07.2012)
способ и устройство для получения энергии -  патент 2451057 (20.05.2012)
способ десорбции кремния с анионитов -  патент 2448042 (20.04.2012)
способ получения кремния -  патент 2441838 (10.02.2012)
способ увеличения светостойкости лакокрасочных покрытий и защитных составов -  патент 2441046 (27.01.2012)
способ сплавления порошка кремния -  патент 2429196 (20.09.2011)
новый материал и способ его производства -  патент 2423148 (10.07.2011)

Класс B82B3/00 Изготовление или обработка наноструктур

Класс C30B29/06 кремний

способ нанесения защитного покрытия на внутреннюю поверхность кварцевого тигля -  патент 2527790 (10.09.2014)
способ прямого получения поликристаллического кремния из природного кварца и из его особо чистых концентратов -  патент 2516512 (20.05.2014)
способ получения кремниевых филаментов произвольного сечения (варианты) -  патент 2507318 (20.02.2014)
аппарат для получения и способ получения поликристаллического кремния -  патент 2495164 (10.10.2013)
способ получения столбчатых монокристаллов кремния из песка и устройство для его осуществления -  патент 2488650 (27.07.2013)
способ получения поликристаллического кремния -  патент 2475570 (20.02.2013)
способ получения поликристаллического кремния -  патент 2475451 (20.02.2013)
способ получения кристаллов кремния -  патент 2473719 (27.01.2013)
реактор для поликристаллического кремния и способ получения поликристаллического кремния -  патент 2470098 (20.12.2012)
способ очистки металлургического кремния увлажненной плазмой переменного тока в вакууме -  патент 2465202 (27.10.2012)

Класс B82Y30/00 Нано-технология материалов или поверхностных эффектов, например нано-композиты

способ получения железного порошка -  патент 2529129 (27.09.2014)
способ получения композиционных материалов на основе диоксида кремния -  патент 2528667 (20.09.2014)
режущая пластина -  патент 2528288 (10.09.2014)
способ получения термоэлектрического материала -  патент 2528280 (10.09.2014)
ветошь для чистки ствола огнестрельного оружия -  патент 2527577 (10.09.2014)
способ упрочнения металлических изделий с получением наноструктурированных поверхностных слоев -  патент 2527511 (10.09.2014)
способ получения наноматериала на основе рекомбинантных жгутиков археи halobacterium salinarum -  патент 2526514 (20.08.2014)
керамический композиционный материал на основе алюмокислородной керамики, структурированной наноструктурами tin -  патент 2526453 (20.08.2014)
нанокомпозит на основе никель-хром-молибден -  патент 2525878 (20.08.2014)
износостойкий композиционный керамический наноструктурированный материал и способ его получения -  патент 2525538 (20.08.2014)
Наверх