импульсная ускорительная нейтронная трубка

Классы МПК:H05H5/00 Ускорители на постоянном напряжении; моноимпульсные ускорители
Автор(ы):, , , , , ,
Патентообладатель(и):Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский ядерный университет МИФИ" (НИЯУ МИФИ) (RU)
Приоритеты:
подача заявки:
2011-06-14
публикация патента:

Заявленное изобретение относится к приборам для ускорения ионов в электростатических полях, конкретно к технике генерации нейтронов при ядерном взаимодействии дейтронов с тритиевыми мишенями. Заявленное устройство содержит вакуумно-дуговой источник дейтронов, состоящий из соосно расположенных кольцевых катода и анода, насыщенных дейтерием, разделенных кольцевым изолятором, ускоряющие электроды, мишень, насыщенную тяжелым изотопом водорода, а также магнитную электронную линзу с продольным магнитным полем, расположенную между источником дейтронов и мишенью. При этом заявленное устройство снабжено дополнительными, идентичными указанным выше, мишенью, ускоряющими электродами и магнитной линзой, расположенными по другую сторону источника дейтронов зеркально-симметрично относительно источника дейтронов. Возможен также другой конструктивный вариант, при котором источник дейтронов содержит между катодом и анодом дополнительный кольцевой электрод поджига, отделенный от них кольцевыми изоляторами. Технический результат заключается в повышении эффективности генерации нейтронов. 1 з.п. ф-лы, 1 ил. импульсная ускорительная нейтронная трубка, патент № 2467526

импульсная ускорительная нейтронная трубка, патент № 2467526

Формула изобретения

1. Импульсная ускорительная нейтронная трубка, содержащая вакуумно-дуговой источник дейтронов, состоящий из соосно расположенных кольцевых катода и анода, насыщенных дейтерием, разделенных кольцевым изолятором, ускоряющие электроды, соединенные с генератором импульсного высокого напряжения, мишень, насыщенную тяжелым изотопом водорода, а также магнитную электронную линзу с продольным магнитным полем, расположенную между источником дейтронов и мишенью, отличающаяся тем, что она снабжена дополнительными идентичными указанным выше мишенью ускоряющими электродами и магнитной линзой, расположенными по другую сторону источника дейтронов зеркально-симметрично относительно источника дейтронов.

2. Импульсная ускорительная нейтронная трубка по п.1, отличающаяся тем, что источник дейтронов содержит между катодом и анодом дополнительный кольцевой электрод поджига, отделенный от них кольцевыми изоляторами.

Описание изобретения к патенту

Изобретение относится к приборам для ускорения ионов в электростатических полях, конкретно к технике генерации нейтронов при ядерном взаимодействии дейтронов с тритиевыми мишенями.

Известны нейтронные генераторы на основе ускорительных трубок (УТ) [1], в которых осуществляется ускорение дейтронов и (или) тритонов к твердой мишени, содержащей тритий и (или) дейтерий, где в результате ядерных реакций синтеза образуется поток быстрых нейтронов. Недостатком такого нейтронного генератора является наличие электронной проводимости при генерации больших нейтронных потоков (импульсная ускорительная нейтронная трубка, патент № 2467526 109 н/с), соответствующих большим токам ионов, ускоряемых в диодной системе УТ. Ее наличие приводит к сильному уменьшению КПД ускорения, т.к. большая часть электрической мощности идет на ускорение электронов, а также деструктивному влиянию ускоренных электронов, попадающих на электроды ионного источника, что приводит к уменьшению ресурса УТ. Обычно подавление электронной проводимости осуществляется с помощью электродов (сетки или кольца) для создания электрического смещения в прикатодной области, не позволяющего электронам, эмитируемым с поверхности мишени, попадать в ускоряющий зазор. Однако при больших ионных токах и (или) ускоряющих напряжениях сам электрод смещения становится эмиттером электронов и указанный способ подавления электронной проводимости перестает работать.

Для ликвидации деструктивного воздействия электронов на элементы конструкции ионного источника в работе [2] предлагается УТ с вакуумно-дуговым источником дейтронов, катод и анод которого выполнены в виде двух соосных кольцевых электродов, насыщенных дейтерием, а в области между ионным источником и мишенью УТ расположена магнитная линза, создающая продольное магнитное поле, фокусирующее электронный поток, чтобы он мог беспрепятственно пройти через полость, охватываемую электродами ионного источника, и поглотиться специальным охлаждаемым массивным коллектором, расположенным за ионным источником. Указанное техническое решение может быть выбрано в качестве прототипа.

Недостатками указанного устройства является низкий КПД ускорения дейтронов, т.к. в УТ-прототипе паразитический электронный компонент не подавляется и значительная часть электрической мощности уходит на его ускорение. Кроме того, при этом возникает проблема эффективного отвода тепла с коллектора, где эта часть мощности выделяется.

Техническим результатом предлагаемого устройства является увеличение КПД ускорения дейтронов.

Этот результат достигается тем, что импульсная ускорительная нейтронная трубка, содержащая вакуумно-дуговой источник дейтронов, состоящий из расположенных соосно кольцевых катода и анода, разделенных кольцевым изолятором, электроды ускоряющей системы, соединенные с генератором импульсного высокого напряжения, мишень, насыщенную тяжелым изотопом водорода, а также магнитную электронную линзу с продольным магнитным полем, снабжена дополнительными, идентичными указанным выше, мишенью, электродами ускоряющей системы, соединенными с генератором импульсного напряжения и магнитной электронной линзой с продольным магнитным полем, расположенными по другую сторону источника дейтронов зеркально-симметрично относительно аналогичных элементов конструкции, указанных выше.

В частном случае возможен конструктивный вариант устройства, при котором вакуумно-дуговой источник дейтронов содержит дополнительный кольцевой электрод поджига дугового разряда, отделенный от катода и анода источника кольцевыми изоляторами.

На Фиг.1 представлен пример конструктивной реализации предлагаемого устройства в виде схемы УТ в разрезе. Устройство содержит вакуумно-дуговой источник дейтронов, состоящий из дополнительного электрода 1 (для поджига разряда в источнике дейтронов); кольцевых изоляторов 2, катода и анода 3; электроды ускоряющей системы 4 и 5; магнитную линзу 6; мишени 7, насыщенные тяжелым изотопом водорода.

Устройство работает следующим образом. При подаче импульса напряжения на дополнительный электрод поджига 1 возникает разряд заряженной накопительной емкости, подсоединенной между анодом и катодом 3, через кольцевые изоляторы 2. Из электродных пятен образовавшейся вакуумной дуги испускаются плазменные потоки, содержащие дейтроны, т.к. электроды источника 3 содержат дейтерий в окклюдированном состоянии. При этом дейтериевая плазма со скоростью порядка скорости звука заполняет полость внутренних электродов ускоряющей системы (4) в обоих направлениях.

Синхронно с этим процессом на внешние электроды ускоряющей системы (5) от генератора импульсного напряжения подается отрицательный импульс с амплитудой импульсная ускорительная нейтронная трубка, патент № 2467526 100 кВ. В результате происходит извлечение дейтронов из плазмы ионного источника и последующее их ускорение к мишеням 7 УТ, где осуществляются ядерные реакции T(d,n)4He или D(d,n)3He, сопровождаемые генерацией быстрых нейтронов.

Электроны, испускаемые с поверхностей мишени и внешних ускоряющих электродов в результате ионно-электронной, авто-электронной или взрывной эмиссии, ускоряются в диодных зазорах и фокусируются магнитной линзой 6 в первом ускоряющем зазоре, а затем замедляются во втором ускоряющем зазоре, где электрическое поле имеет противоположенный знак. При этом фокусное расстояние магнитной линзы подбирается таким образом, чтобы электронный поток беспрепятственно проходил через полость источника дейтронов.

Таким образом, электронный компонент не участвует в замыкании электрической цепи, состоящей из генератора импульсного высокого напряжения и двух соединенных параллельно ускоряющих зазоров, в которых электронные токи протекают в противоположенных направлениях и взаимно компенсируют друг друга.

Объемный заряд электронов частично компенсирует объемный заряд дейтронов. По сравнению с обычным биполярным диодом, используемым, например, в прототипе, эта компенсация является двукратной, т.к. электронная плотность в данном случае превышает плотность электронов в обычном биполярном диоде в два раза. Это обеспечивает значительное увеличение первеанса диодных зазоров, по сравнению с диодным зазором прототипа, а следовательно, и излучаемого нейтронного потока.

В процессе генерации нейтронов проявляются еще два важных побочных положительных эффекта.

Первый из них состоит в дополнительной ионизации электронным ударом плазмы ионного источника ускоренными эмиссионными электронами с мишени и ускоряющих электродов. Это приводит к увеличению концентрации дейтронов в плазме ионного источника, а следовательно, и его эмиссионной способности.

Второй эффект связан с возможными потерями энергии электронов на столкновениях при прохождении через плазму ионного источника. Если электрон при этом теряет энергию, превышающую его начальную кинетическую энергию инжекции в ускоряющий зазор, то он в силу закона сохранения энергии уже не может сесть на поверхность противоположной мишени или ускоряющего электрода, а захватывается в потенциальную яму между внешними ускоряющими электродами и начинает в ней осциллировать, создавая дополнительную ионизацию плазмы, а также обеспечивая еще большую компенсацию объемного заряда дейтронов и увеличение диодных первеансов.

Таким образом, увеличение КПД ускорения дейтронов за счет выключения электронной составляющей тока в цепи импульсного генератора высокого напряжения, увеличение первеанса диодных зазоров в результате дополнительной компенсации объемного заряда дейтронов и увеличение концентрации дейтронов в плазме ионного источника за счет столкновений эмиссионных электронов с нейтральными атомами дейтерия создают сверхсуммарный положительный эффект, существенно отличающий заявляемое устройство от прототипа и других возможных аналогов.

Оценка параметров магнитной линзы осуществлялась в результате компьютерного эксперимента, в процессе которого проводился численный анализ динамики электронов в предлагаемом устройстве в параксиальном приближении путем численного решения следующей системы дифференциальных уравнений [3]:

импульсная ускорительная нейтронная трубка, патент № 2467526

в которой координата z откладывается вдоль центральной оси УТ, функции импульсная ускорительная нейтронная трубка, патент № 2467526 (z) и B(z) определяют соответственно распределения потенциала электрического поля и индукции магнитного поля на центральной оси УТ, рассчитываемые по специальным компьютерным программам, е, m - соответственно заряд и масса электронов. В качестве магнитной линзы рассматривался постоянный кольцевой магнит с продольной намагниченностью.

Рассмотрим пример конкретной реализации устройства с учетом результатов проведенного математического эксперимента, соответствующий следующей геометрии устройства: радиус электродов ускоряющей системы R=2.5·10-2 м; внутренний радиус электродов ионного источника r=2.5·10 -3 м; ширина ускоряющего зазора d=5·10-3 м; толщина кольцевого магнита H=5·10-3 м. При этом в качестве генератора импульсных напряжений могут быть использованы импульсный трансформатор с ферромагнитным сердечником или генератор Аркадьева-Маркса, позволяющие формировать на диодных зазорах УТ импульсы напряжения с амплитудой 150 кВ и длительностью около 3 мкс на полувысоте. Энергия, запасаемая в цепи ионного источника, может составлять величину до 0.5 Дж.

Расчеты показывают, что для указанных параметров при частоте следований нейтронных вспышек 25 Гц поток нейтронов, излучаемый мишенями УТ, может достигать 1010 н/с.

Разработка и внедрение предлагаемого устройства должны повысить КПД производства исследований горных пород, содержащих продуктивные углеводороды, уран и драгоценные металлы, методом нейтронного элементного анализа, а также работ, связанных с поиском и идентификацией скрытых опасных предметов нейтронными методами.

Источники информации

1. Сб. трудов Международной научно-технической конференции «Портативные генераторы нейтронов и технологии на их основе». М., ВНИИА, 2005, с.72-94.

2. Walko R.J., Rochau G.E. IEEE Trans. on Nucl. Sci., vol. NS-28, No2, 1981, pp.1531-1534.

3. Молоковский С.И., Сушков А.Д. Интенсивные электронные и ионные пучки. Энергоатомиздат, М., 1991, 304 с.

Класс H05H5/00 Ускорители на постоянном напряжении; моноимпульсные ускорители

резонансный электромагнитный ускоритель с компенсацией потерь -  патент 2524574 (27.07.2014)
импульсный ускоритель твердых частиц -  патент 2523666 (20.07.2014)
свободно осциллирующий электромагнитный ускоритель -  патент 2523426 (20.07.2014)
линейный индукционный ускоритель с двумя разнополярными импульсами -  патент 2522993 (20.07.2014)
ускорительная нейтронная трубка -  патент 2521050 (27.06.2014)
способ оценки распределения ионного пучка перезарядного электростатического ускорителя на облучаемом образце -  патент 2515466 (10.05.2014)
ленточный транспортер зарядов для электростатических ускорителей -  патент 2504932 (20.01.2014)
ускоритель высокоскоростных твердых частиц -  патент 2487505 (10.07.2013)
блок излучателя нейтронов -  патент 2477027 (27.02.2013)
ускорительная трубка -  патент 2467527 (20.11.2012)
Наверх