электролитический способ получения ультрадисперсного порошка гексаборида гадолиния

Классы МПК:C25C5/04 из расплавов
C01B35/04 бориды металлов
C01F17/00 Соединения редкоземельных металлов, те скандия, иттрия, лантана или группы лантаноидов
Автор(ы):, , , ,
Патентообладатель(и):Государственное образовательное учреждение высшего профессионального образования Кабардино-Балкарский государственный университет им. Х.М. Бербекова (RU)
Приоритеты:
подача заявки:
2011-05-18
публикация патента:

Изобретение относится к электролитическим способам получения чистого гексаборида гадолиния. В качестве источника гадолиния используют безводный трихлорид гадолиния, источника бора - фторборат калия, фонового электролита - эквимольную смесь хлоридов калия и натрия. Электролиз ведут в потенциостатическом режиме при температуре 700±10°С, плотностях тока от -0,1 до -1,0 А/см2 и потенциалах электролиза от -2,6 до -2,8 В относительно стеклоуглеродного квазистационарного электрода сравнения. Техническим результатом является: получение чистого ультрадисперсного порошка гексаборида гадолиния, повышение скорости синтеза целевого продукта из расплавленного электролита и снижение энергозатрат. 1 з.п. ф-лы, 3 пр.

Изобретение относится к электролитическим способам получения чистого гексаборида гадолиния.

Наиболее близким является способ получения гексаборида гадолиния при помощи электролиза расплавленных сред [Самсонов Г.В. Тугоплавкие соединения редкоземельных металлов. М.: Изд-во «Металлургия», 1964, стр.53-55]. Электролиз осуществляется в графитовых тиглях, служащих одновременно анодом; катод изготовляется из графита или молибдена. В состав ванны для электролиза входят окислы редкоземельных металлов и борный ангидрид с добавками фторидов щелочных и щелочноземельных металлов для снижения температуры и вязкости ванны. Температура электролиза смесей составляет 950-1000°С, напряжение на ванне 3-15 В, плотность тока 0,3-3,0 А/см2. Состав ванны для получения гексаборида гадолиния: Сd2О 3+2B2O3+MgO+MgF.

Как отмечается [Самсонов Г.В. Тугоплавкие соединения редкоземельных металлов. М.: Изд-во «Металлургия», 1964, стр.53-55], получение индивидуальной боридной фазы практически невозможно или очень затруднительно. Недостатками также являются высокая температура синтеза и сложность отделения целевого продукта от расплавленного электролита из-за низкой растворимости боратов и фторидов, загрязнение побочными продуктами, например боратами.

Задачей изобретения является получение чистого ультрадисперсного порошка гексаборида гадолиния, повышение скорости синтеза целевого продукта из расплавленного электролита и снижение энергозатрат.

Сущность изобретения заключается в том, что осуществляется совместное электровыделение гадолиния и бора из хлоридного расплава на катоде и последующее взаимодействие их на атомарном уровне с образованием ультрадисперсных порошков гексаборида гадолиния. Процесс осуществляется в трехэлектродной кварцевой ячейке, где в качестве катода используется вольфрамовый стержень; электрод сравнения - стеклоуглеродная пластина; анод и одновременно контейнер - стеклоуглеродный тигель (также использовался алундовый тигель в качестве контейнера для расплава и стеклоуглеродная пластина в качестве анода).

Синтез ультрадисперсного порошка гексаборида гадолиния проводят посредством потенциостатического электролиза из эквимольного расплава KCl-NaCl, содержащего трихлорид гадолиния и фторборат калия. Потенцио-статический электролиз эквимольного расплава KCl-NaCl-GdCl3-KBF4 проводят на вольфрамовом электроде в пределах от -2,6 до -2,8 В относительно стеклоуглеродного квазистационарного электрода сравнения. Синтез проводят в атмосфере очищенного и осушенного аргона. Катодно-солевую грушу отмывают от фторида гадолиния во фториде калия.

В качества источника гадолиния используют безводный трихлорид гадолиния, в качестве источника бора - фторборат калия, в качестве фонового электролита - эквимольную смесь хлоридов калия и натрия при следующем соотношении компонентов, мас.%:

хлорид гадолиния 5,0-6,5

фторборат калия 7,5-10,5

остальное - эквимольная смесь хлоридов калия и натрия.

Электролиз ведут в потенциостатическом режиме при температуре 700±10°С, оптимальной для данного растворителя. Возможно осуществление синтеза и при более высокой температуре, однако повышение температуры приводит к испарению расплава, увеличению давления пара над расплавом, потере фторбората калия ввиду его термической нестойкости.

Выбор компонентов электролитической ванны произведен на основании термодинамического анализа и кинетических измерений совместного электровыделения гадолиния и бора из хлоридных расплавов. Из соединений гадолиния и бора, не содержащих кислород, хлорид гадолиния и фторборат калия являются достаточно низкоплавкими и хорошо растворимыми в эквимольном расплаве KCl-NaCl. Данный фоновый электролит выбран из следующих соображений: напряжение разложения расплавленной смеси KCl-NaCl больше напряжения разложения для расплавов GdCl 3 и KBF4, к тому же хлориды щелочных металлов хорошо растворимы в воде.

Фазовый состав идентифицирован методом рентгенофазового анализа на дифрактометре ДРОН-6, результаты констатировали наличие только фазы GdB6.

Пример 1. В стеклоуглеродный тигель объемом 40 см3 помещали солевую смесь массой 38,37 г, содержащую 2,1 г GdCl 3 (5,5 мас.%); 3,01 г KBF4 (7,8 мас.%); 18,63 г KCl (48,6 мас.%); 14,63 г NaCl (38,1 мас.%). Тигель с солевой смесью помещают в кварцевую ячейку и в атмосфере сухого аргона выдерживают до температуры расплавления системы (700±10°С). По достижении рабочей температуры в расплав опускают вольфрамовый катод. Электролиз проводят при потенциале -2,6÷-2,8 В относительно стеклоуглеродного электрода сравнения (плотность тока - 0,80 А/см2), продолжительность электролиза 110-120 мин. Катодно-солевую грушу отмывают от фторида гадолиния во фториде калия. Удельная поверхность порошков GdB6 - 5÷10 м2/г.

Пример 2. В стеклоуглеродный тигель объемом 40 см3 помещали солевую смесь массой 38,1 г, содержащую 2,3 г GdCl3 (6,0 мас.%); 3,3 г KBF4 (8,7 мас.%); 18,2 г KCl (47,8 мас.%); 14,3 г NaCl (37,5 мас.%). Тигель с солевой смесью помещают в кварцевую ячейку и в атмосфере сухого аргона выдерживают до температуры расплавления системы (700±10°С). По достижении рабочей температуры в расплав опускают вольфрамовый катод. Электролиз проводят при потенциале -2,7÷-2,9 В относительно стеклоуглеродного электрода сравнения (плотность тока - 0,85 А/см2), продолжительность электролиза 110-120 мин. Катодно-солевую грушу отмывают от фторида гадолиния во фториде калия. Удельная поверхность порошков GdB6 - 5÷10 м2/г.

Пример 3. В алундовый тигель объемом 60 см3 помещали солевую смесь массой 51,13 г, содержащую 2,8 г GdCl3 (5,5 мас.%); 4,0 г KBF4 (7,8 мас.%); 24,83 г KCl (48,6 мас.%); 19,5 г NaCl (38,1 мас.%). Тигель с солевой смесью помещают в кварцевую ячейку и в атмосфере сухого аргона выдерживают до температуры расплавления системы (700±10°С). По достижении рабочей температуры в расплав опускают вольфрамовый катод. Электролиз проводят при потенциале -2,7÷-2,9 В относительно стеклоуглеродного электрода сравнения (плотность тока -0,9 А/см 2), продолжительность электролиза 110-120 мин. Катодно-солевую грушу отмывают от фторида гадолиния во фториде калия. Удельная поверхность порошков GdB6 - 5÷10 м2 /г.

Техническим результатом является получение чистого ультрадисперсного порошка гексаборида гадолиния, повышение скорости синтеза целевого продукта из расплавленного электролита и снижение энергозатрат.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Электролитический способ получения ультрадисперсного порошка гексаборида гадолиния, включающий синтез гексаборида гадолиния из расплавленных сред, отличающийся тем, что синтез проводят из хлоридного расплава в атмосфере очищенного и осушенного аргона, в качестве источника гадолиния используют безводный хлорид гадолиния, источника бора - фторборат калия, фонового электролита - эквимольную смесь хлорид калия и хлорид натрия при следующем соотношении компонентов, мас.%:

хлорид гадолиния 5,0-6,5
фторборат калия7,5-10,5
эквимолярная смесь хлоридов калия и натрия остальное

2. Способ по п.1, отличающийся тем, что синтез проводят при температуре 700±10°С, плотностях тока от -0,1 до -1,0 А/см 2 и потенциалах электролиза от -2,6 до -2,8 В относительно стеклоуглеродного квазистационарного электрода сравнения.


Скачать патент РФ Официальная публикация
патента РФ № 2466217

patent-2466217.pdf
Патентный поиск по классам МПК-8:

Класс C25C5/04 из расплавов

Патенты РФ в классе C25C5/04:
способ получения ультрадисперсных порошков интерметаллидов иттрия с кобальтом -  патент 2514237 (27.04.2014)
электролитический способ получения ультрадисперсного порошка гексаборида гадолиния -  патент 2507314 (20.02.2014)
электролитический способ получения ультрадисперсного порошка гексаборида церия -  патент 2466090 (10.11.2012)
способ получения высоко- и нанодисперсного порошка металлов или сплавов -  патент 2423557 (10.07.2011)
способ получения порошков металлов и сплавов восстановлением из катодного материала -  патент 2423556 (10.07.2011)
способ получения порошка тугоплавкого металла -  патент 2401888 (20.10.2010)
способ получения порошков тугоплавких металлов -  патент 2397279 (20.08.2010)
электролитический способ получения гексаборида празеодима -  патент 2393115 (27.06.2010)
способ получения нанодисперсного порошка карбида вольфрама -  патент 2372421 (10.11.2009)
способ получения нанодисперсных твердосплавных композиций на основе двойного карбида вольфрама и кобальта -  патент 2372420 (10.11.2009)

Класс C01B35/04 бориды металлов

Патенты РФ в классе C01B35/04:
способ получения нанодисперсных порошков нитрида бора и диборида титана -  патент 2523471 (20.07.2014)
способ получения додекаборида алюминия -  патент 2513402 (20.04.2014)
способы изготовления порошков диборида титана -  патент 2513398 (20.04.2014)
электролитический способ получения ультрадисперсного порошка гексаборида диспрозия -  патент 2510630 (10.04.2014)
электролитический способ получения ультрадисперсного порошка гексаборида гадолиния -  патент 2507314 (20.02.2014)
способ получения порошка диборида титана для материала смачиваемого катода алюминиевого электролизера -  патент 2498880 (20.11.2013)
электролитический способ получения ультрадисперсного порошка гексаборида церия -  патент 2466090 (10.11.2012)
постоянный магнит и способ его изготовления -  патент 2458423 (10.08.2012)
способ получения нанодисперсного порошка гексаборида иттрия -  патент 2448044 (20.04.2012)
способ получения сверхпроводящего трехкомпонентного борида -  патент 2443627 (27.02.2012)

Класс C01F17/00 Соединения редкоземельных металлов, те скандия, иттрия, лантана или группы лантаноидов

Патенты РФ в классе C01F17/00:
способ кристаллизации фосфатов рзм из растворов экстракционной фосфорной кислоты -  патент 2529228 (27.09.2014)
способ извлечения редкоземельных элементов из экстракционной фосфорной кислоты при переработке хибинских апатитовых концентратов -  патент 2528692 (20.09.2014)
новый желтый неорганический пигмент из самария и соединений молибдена и способ его получения -  патент 2528668 (20.09.2014)
способ получения сольвата хлорида неодима с изопропиловым спиртом для неодимового катализатора полимеризации изопрена -  патент 2526981 (27.08.2014)
способ извлечения редкоземельных металлов из фосфогипса -  патент 2526907 (27.08.2014)
способ извлечения редкоземельных элементов из экстракционной фосфорной кислоты -  патент 2525947 (20.08.2014)
способ извлечения редкоземельных элементов из гидратно-фосфатных осадков переработки апатита -  патент 2524966 (10.08.2014)
способ очистки фосфатно-фторидного концентрата рзэ -  патент 2523319 (20.07.2014)
композиция на основе оксидов циркония, церия и другого редкоземельного элемента при сниженной максимальной температуре восстанавливаемости, способ получения и применение в области катализа -  патент 2518969 (10.06.2014)
способ выделения гадолиния экстракцией фосфорорганическими соединениями -  патент 2518619 (10.06.2014)


Наверх