электролитический способ получения ультрадисперсного порошка гексаборида церия

Классы МПК:C01B35/04 бориды металлов
C25C5/04 из расплавов
C01F17/00 Соединения редкоземельных металлов, те скандия, иттрия, лантана или группы лантаноидов
Автор(ы):, , , , ,
Патентообладатель(и):Государственное образовательное учреждение высшего профессионального образования Кабардино-Балкарский государственный университет им. Х.М. Бербекова (RU)
Приоритеты:
подача заявки:
2011-05-13
публикация патента:

Изобретение относится к электролитическим способам получения чистого гексаборида церия. В качестве источника церия используют безводный хлорид церия 1-4 мас.%, источника бора - фторборат калия 1-3 мас.%, фонового электролита - эвтектическую смесь хлоридов калия, натрия и цезия - остальное. Синтез ультрадисперсного порошка гексаборида церия проводят посредством электролиза из эвтектического расплава KCl-NaCl-CsCl, содержащего хлорид церия и фторборат калия. Изобретение позволяет получить чистый целевой продукт за счет хорошей растворимости эвтектического фонового электролита в воде и уменьшение затрат электроэнергии путем снижения температуры синтеза. 1 з.п. ф-лы.

Изобретение относится к электролитическим способам получения чистого гексаборида церия.

Наиболее близким является способ получения гексаборида церия электролизом расплавленных сред [Самсонов Г.В. Тугоплавкие соединения редкоземельных металлов, Изд-во «Металлургия». М. 1964, стр.53-55]. Электролиз осуществляют в графитовых тиглях, служащих одновременно анодом; катод изготовляют из графита или молибдена. В состав ванны для электролиза входят окислы редкоземельных металлов и борный ангидрид с добавками фторидов щелочных и щелочноземельных металлов для снижения температуры и вязкости ванны. Температура электролиза смесей составляет 950-1000°С, напряжение на ванне 8,5÷12 В, плотность тока 2,5÷2,6 А/см2. Состав ванны для получения гексаборида церия:

СеO2 +2В2O3+CeF2

или 1/3СеО22О3+CaF2

или 1/10CeO2+2B2O3 +MgO+MgF2

Как отмечается [Самсонов Г.В. Тугоплавкие соединения редкоземельных металлов, Изд-во «Металлургия». М. 1964, стр.53-55], получение индивидуальной боридной фазы практически невозможно или очень затруднено. Недостатками способа являются высокая температура синтеза и сложность отделения целевого продукта от расплавленного электролита из-за низкой растворимости боратов и фторидов, загрязнение побочными продуктами, в частности боратами.

Задачей изобретения является получение чистого ультрадисперсного порошка гексаборида церия, повышение скорости синтеза целевого продукта из расплавленного электролита и экономии электроэнергии за счет снижения температуры синтеза.

Сущность изобретения заключается в том, что осуществляют совместное электровыделение церия и бора из галогенидного расплава на катоде и их последующее взаимодействие на атомарном уровне с образованием ультрадисперсных порошков гексаборида церия. Процесс осуществляется в трехэлектродной кварцевой ячейке в атмосфере очищенного и осушенного аргона, где катодом служат серебряный и стеклоуглеродный стержни; электродом сравнения - стеклоуглеродная пластина; анодом и одновременно контейнером - стеклоуглеродный тигель. Синтез ультрадисперсного порошка гексаборида церия проводят посредством потенциостатического электролиза из эвтектического расплава KCl-NaCl-CsCl, содержащего хлорид церия и фторборат калия при потенциалах от -2,0 до -3,0 В относительно стеклоуглеродного электрода сравнения и температуре 550°±10°С и при плотностях тока от 0,1 до 1,0 А/см2. Оптимальная продолжительность ведения процесса электролиза составляет 50÷60 мин. Полученную катодно-солевую группу отмывают от фторида церия фторидом калия.

В качестве источника церия используют безводный хлорид церия, источника бора - фторборат калия, фонового электролита - эвтектическую смесь хлоридов калия, натрия и цезия при следующем соотношении компонентов, мас.%:

хлорид церия 1,0÷4,0;

фторборат калия 1,0÷3,0;

остальное: эвтектическая смесь хлоридов калия, натрия и цезия.

Выбор компонентов электролитической ванны произведен на основании термодинамического анализа и кинетических измерений совместного электровыделения церия и бора из галогенидных расплавов. Хлорид церия и фторборат калия являются достаточно низкоплавкими и хорошо растворимыми в эвтектическом расплаве KCl-NaCl-CsCl. Фоновый электролит (эвтектический расплав KCl-NaCl-CsCl) выбран из следующих соображений: напряжение разложения расплавленной смеси KCl-NaCl-CsCl больше таковых для расплавов CeCl3 и KBF4 , хорошая растворимость в воде.

Фазовый состав идентифицирован методом рентгенофазового анализа на дифрактометре ДРОН-6, который показал наличие только фазы СеВ6. Размер частиц порошка определяли с помощью сканирующего зондового микроскопа Solver PRO P47.

Пример 1.

В стеклоуглеродный тигель объемом 40 мл помещали солевую смесь массой 31,96 г, содержащую 1,3 г СеСl3 (4,07 мас.%); 0,66 г KBF4 (2,06 мас.%); 4,869 г KСl (15,23 мас.%); 4,68 г NaCl (14,6 мас.%); 20,45 г CsCl (63,98 мас.%). Тигель с солевой смесью помещают в кварцевую ячейку и в атмосфере сухого аргона выдерживают до температуры расплавления системы. По достижении рабочей температуры 550°С в расплав опускают стеклоуглеродный катод, электролиз проводят при потенциале -2,7 В относительно стеклоуглеродного электрода сравнения (плотность тока 0,5А/см 2). Катодно-солевую группу, состоящую из гексаборида церия, отмывают от фторида церия фторидом калия. Размер частиц полученного порошка гексаборида церия 130-140 нм.

Пример 2.

В стеклоуглеродный тигель объемом 40 мл помещали солевую смесь массой 30,92 г, содержащую 0,37 г СеСl3 (1,2 мас.%); 0,55 г KBF4 (1,8 мас.%); 4,869 г KСl (16 мас.%); 4,68 г NaCl (15 мас.%); 20,45 г CsCl (66 мас.%). Тигель с солевой смесью помещают в кварцевую ячейку и в атмосфере сухого аргона выдерживают до температуры расплавления системы. По достижении рабочей температуры 550°С в расплав опускают серебряный катод, электролиз проводят при потенциале -2,45 В относительно стеклоуглеродного электрода сравнения (плотность тока 0,8 А/см2). Катодно-солевую группу, состоящую из гексаборида церия, отмывают от фторида церия фторидом калия. Размер частиц полученного порошка гексаборида церия 130 нм.

Пример 3.

В стеклоуглеродный тигель объемом 40 мл помещали солевую смесь массой 31,22 г, содержащую 0,39 г СеСl3 (1,3 мас.%); 0,83 г KBF4 (2,7 мас.%); 4,869 г KCl (15,5 мас.%); 4,68 г NaCl (15 мас.%); 20,45 г CsCl (65,5 мас.%). Тигель с солевой смесью помещают в кварцевую ячейку и в атмосфере сухого аргона выдерживают до температуры расплавления системы. По достижении рабочей температуры 550°С в расплав опускают стеклоуглеродный катод, электролиз проводят при потенциале -2,5 В относительно стеклоуглеродного электрода сравнения (плотность тока 0,7 А/см2). Катодно-солевую группу, состоящую из гексаборида церия, отмывают от фторида церия фторидом калия. Размер частиц полученного порошка гексаборида церия 140 нм.

Техническим результатом является: получение чистого целевого продукта за счет хорошей растворимости эвтектического фонового электролита в воде и уменьшение затрат электроэнергии путем снижения температуры синтеза.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Электролитический способ получения ультрадисперсных порошков гексаборида церия, включающий синтез гексаборида церия из расплавленных сред, отличающийся тем, что синтез проводят из галогенидного расплава в атмосфере очищенного и осушенного аргона, причем в качестве источника церия используют безводный хлорид церия, источника бора - фторборат калия, фонового электролита - эвтектическую смесь хлоридов калия, натрия и цезия при следующем соотношении компонентов, мас.%:

хлорид церия 1,0÷4,0
фторборат калия1,0÷3,0
эвтектическая смесь хлоридов калия, электролитический способ получения ультрадисперсного порошка   гексаборида церия, патент № 2466090
натрия и цезия остальное

2. Способ по п.1, отличающийся тем, что синтез проводят при температуре 550°С, плотностях тока от 0,1 до 1,0 А/см2 и потенциалах электролиза относительно стеклоуглеродного электрода сравнения от -2,0 до -3,0 В.


Скачать патент РФ Официальная публикация
патента РФ № 2466090

patent-2466090.pdf
Патентный поиск по классам МПК-8:

Класс C01B35/04 бориды металлов

Патенты РФ в классе C01B35/04:
способ получения нанодисперсных порошков нитрида бора и диборида титана -  патент 2523471 (20.07.2014)
способ получения додекаборида алюминия -  патент 2513402 (20.04.2014)
способы изготовления порошков диборида титана -  патент 2513398 (20.04.2014)
электролитический способ получения ультрадисперсного порошка гексаборида диспрозия -  патент 2510630 (10.04.2014)
электролитический способ получения ультрадисперсного порошка гексаборида гадолиния -  патент 2507314 (20.02.2014)
способ получения порошка диборида титана для материала смачиваемого катода алюминиевого электролизера -  патент 2498880 (20.11.2013)
электролитический способ получения ультрадисперсного порошка гексаборида гадолиния -  патент 2466217 (10.11.2012)
постоянный магнит и способ его изготовления -  патент 2458423 (10.08.2012)
способ получения нанодисперсного порошка гексаборида иттрия -  патент 2448044 (20.04.2012)
способ получения сверхпроводящего трехкомпонентного борида -  патент 2443627 (27.02.2012)

Класс C25C5/04 из расплавов

Патенты РФ в классе C25C5/04:
способ получения ультрадисперсных порошков интерметаллидов иттрия с кобальтом -  патент 2514237 (27.04.2014)
электролитический способ получения ультрадисперсного порошка гексаборида гадолиния -  патент 2507314 (20.02.2014)
электролитический способ получения ультрадисперсного порошка гексаборида гадолиния -  патент 2466217 (10.11.2012)
способ получения высоко- и нанодисперсного порошка металлов или сплавов -  патент 2423557 (10.07.2011)
способ получения порошков металлов и сплавов восстановлением из катодного материала -  патент 2423556 (10.07.2011)
способ получения порошка тугоплавкого металла -  патент 2401888 (20.10.2010)
способ получения порошков тугоплавких металлов -  патент 2397279 (20.08.2010)
электролитический способ получения гексаборида празеодима -  патент 2393115 (27.06.2010)
способ получения нанодисперсного порошка карбида вольфрама -  патент 2372421 (10.11.2009)
способ получения нанодисперсных твердосплавных композиций на основе двойного карбида вольфрама и кобальта -  патент 2372420 (10.11.2009)

Класс C01F17/00 Соединения редкоземельных металлов, те скандия, иттрия, лантана или группы лантаноидов

Патенты РФ в классе C01F17/00:
способ кристаллизации фосфатов рзм из растворов экстракционной фосфорной кислоты -  патент 2529228 (27.09.2014)
способ извлечения редкоземельных элементов из экстракционной фосфорной кислоты при переработке хибинских апатитовых концентратов -  патент 2528692 (20.09.2014)
новый желтый неорганический пигмент из самария и соединений молибдена и способ его получения -  патент 2528668 (20.09.2014)
способ получения сольвата хлорида неодима с изопропиловым спиртом для неодимового катализатора полимеризации изопрена -  патент 2526981 (27.08.2014)
способ извлечения редкоземельных металлов из фосфогипса -  патент 2526907 (27.08.2014)
способ извлечения редкоземельных элементов из экстракционной фосфорной кислоты -  патент 2525947 (20.08.2014)
способ извлечения редкоземельных элементов из гидратно-фосфатных осадков переработки апатита -  патент 2524966 (10.08.2014)
способ очистки фосфатно-фторидного концентрата рзэ -  патент 2523319 (20.07.2014)
композиция на основе оксидов циркония, церия и другого редкоземельного элемента при сниженной максимальной температуре восстанавливаемости, способ получения и применение в области катализа -  патент 2518969 (10.06.2014)
способ выделения гадолиния экстракцией фосфорорганическими соединениями -  патент 2518619 (10.06.2014)


Наверх