Поиск патентов
ПАТЕНТНЫЙ ПОИСК В РФ

способ обезвреживания отработанного активированного угля с получением калорийного топлива

Классы МПК:C01B31/08 активированный уголь 
C10J3/46 газификация гранулированного или пылевидного топлива в суспензии 
C01B3/02 получение водорода или газовых смесей, содержащих водород
B01J20/34 регенерация или реактивация
Автор(ы):, , ,
Патентообладатель(и):Общество с ограниченной ответственностью "ТехЭкоПлазма" (ООО "ТехЭкоПлазма") (RU)
Приоритеты:
подача заявки:
2011-02-18
публикация патента:

Изобретение относится к области обезвреживания отходов. Отработанный активированный уголь подвергают термической обработке водяным паром. Водяной пар делят на два потока, часть которого поступает в плазмотрон. Полученную из плазмотрона низкотемпературную паровую плазму направляют в емкость, где при смешивании с остальной частью водяного пара получают высокотемпературную струю реакционного газа с температурой 1000-1200°С. Полученным реакционным газом продувают активированный уголь. На 1 кг активированного угля расходуют 1,3-1,5 кг водяного пара. В результате обезвреживания отработанного угля получают газообразную смесь, содержащую H 2 и CO. Технический результат состоит в возможности получения ценного продукта в виде газообразной смеси, содержащей H 2 и CO, в процессе обезвреживания отходов отработанного активного угля.

Изобретение относится к решению экологических проблем обезвреживания отходов, в частности отработанного активированного угля, и может быть использовано в химической, нефтехимической, металлургической, медицинской, пищевой и других отраслях промышленности, где загрязненные газовые выбросы очищаются сорбционным способом на активированном угле.

Проблема защиты окружающей среды продиктована напряженной экологической обстановкой, сложившейся в результате техногенного воздействия ресурсо- и энергоемких производств, которые оказывает существенное влияние на смещение экологического равновесия.

Возрастающие объемы водопотребления, снижение качества природных вод и ужесточение нормативных требований на сброс сточных вод способствуют увеличению потребления сорбентов, наиболее распространенными из которых являются активированные угли.

Активированный уголь наиболее часто употребляется и применяется в системах очистки технологических газов и вентиляционных системах воздуха от вредных примесей. Очистка происходит за счет сорбции в порах и каналах частиц угля вредных веществ и загрязнителей газов и воздуха.

В случаях, когда сорбированные продукты ввиду их однородности и высокой концентрации целесообразно улавливать и использовать, активированный уголь регенерируют или реактивируют и возвращают в процесс для повторного использования.

В целях регенерации активированный уголь подвергают обработке горячими (110°-180°С) нейтральными газами или водяным паром с температурой до 600°С (RU 2071830, кл. B01J 20/34, опубл. 20.01.1992 г.; RU 2159706, кл. B60H 3/00, опубл. 27.11.2000 г.; RU 2167103, кл. C01B 31/08, опубл. 20.05.2001 г.).

В процессе регенерации органические и другие загрязнения десорбируются, выносятся из пор активированного угля газами и сжигаются, на что затрачивается целевое топливо.

Регенерация активированного угля сопровождается разрушением фрагментов угля, сокращением площади активных зон, забивкой пор коксом и продуктами химического взаимодействия веществ с углем или друг с другом, то есть потерей активности угля.

Проблема обезвреживания отработанного активированного угля близка к методам переработки угля, например, в синтез-газ.

Известен плазмотермический способ переработки угля в синтез-газ, включающий подготовку, термообработку и газификацию угля с помощью плазмы в плазмореакторе. Способ осуществляют в три стадии, две из которых ведут в трубчатых теплообменниках газификационной колонны, а третью, заключительную, стадию газификации проводят непосредственно в объеме плазмореактора одновременно с процессом высокотемпературного пиролиза в присутствии реагента, при этом подготовку угля осуществляют путем диспергирования в метаноловой воде, в которую добавляют поверхностно-активные вещества алкилоламиды, и полученную угольную суспензию нагревают перед первой стадией газификации до 500 600 K в потоке отходящих из газификационной колонны дымовых газов, а перед второй стадией газификации нагревают до 1200-1400 K в потоке синтез-газа, отводимого из плазмореактора (RU 2047650, кл. C10J 3/18, опубл. 10.11.1995 г.).

Недостатками известного технического решения являются сложность установки, в которой процесс подогрева водоугольной суспензии протекает в две стадии, вначале в подогревателе предварительного подогрева водоугольной суспензии до 500-600 K, а затем в нижней части трубчатого теплообменника первой стадии газификации со сжиганием в теплообменнике части синтез-газа, а процесс газификации водоугольной суспензии протекает в три стадии, вначале в закалочном устройстве, являющемся выходной частью плазмореактора, затем в верхней части теплообменника, а затем в собственно плазмореакторе, а также необходимость использования для реализации третьего этапа газификации высокотемпературного плазмореактора, использование которого требует применения специальных материалов, стойких к воздействию высокой температуры в химически агрессивной среде (CO2, H2O и т.д.).

Известна установка для переработки водоугольного топлива в синтез-газ (RU 2190661, кл. C10J 3/46, опубл. 27.06.2002 г.). В указанной установке в качестве водоугольного топлива используют коллоидную дисперсную топливную систему со средним поверхностным размером частиц дисперсной фазы не более 1 мкм.

Температуру теплоносителя в межтрубном пространстве реактора поддерживают в диапазоне 400-1000°С, а температуру в трубах - в диапазоне 200-800°С.

Недостатком известной установки является низкая эффективность процесса получения синтез-газа, поскольку независимый нагрев теплоносителя, подаваемого в межтрубное пространство реактора, до 1000°С при наличии горячего воздуха, охлаждающего синтез-газ после трубчатого охладителя, приводит к лишним затратам энергии на нагрев дисперсной топливной системы.

На практике, ввиду значительных энергозатрат при переработки угля в синтез-газ, избирательности процесса регенерации активированного угля и значительных энергетических затрат, если не преследуется цель получения отдельных сорбированных продуктов, представляется целесообразным уничтожение загрязненного угля вместе с сорбированными веществами, особенно загрязнителями окружающей среды.

Обезвреживание загрязненного активированного угля обычно осуществляется его захоронением на полигонах или путем обработки его в продуктах горения целевого топлива вместе с сорбированными веществами в слоевых печах различной конструкции.

Непосредственно уголь, состоящий на 90% из чистого углерода, горит плохо из-за отсутствия летучих составляющих (летучие примеси, частично десорбированные из угля, сгорают над его слоем, не оказывая существенного воздействия на сжигание угля).

Применение способов объемного сжигания угля (циклонный, кипящий слой) из-за их сложности и больших энергозатрат не является экономически эффективным. Сжиганию обычно подлежит уголь из абсорберов вентиляционных систем, загрязненный многими органическими веществами различных классов, имеющими низкую концентрацию в очищаемом воздухе и малое количество в угле. По этой причине уголь не сгорает быстро и полностью и требует захоронения.

Задача настоящего изобретения состоит в получении калорийного топлива в процессе обезвреживания отработанного активированного угля, исключающего большие энергетические затраты.

Для решение данной задачи предлагается способ обезвреживания отработанного активированного угля с получением калорийного топлива термической обработкой водяным паром, включающий разделение водяного пара на два потока, часть которого поступает в плазмотрон, из которого полученную низкотемпературную паровую плазму направляют в емкость, где при смешивании с остальной частью водяного пара получают высокотемпературную струю реакционного газа с температурой 1000-1200°С, которой при расходе 1,3-1,5 кг водяного пара на 1 кг активированного угля продувают активированный уголь и получают газообразную смесь, содержащую H2 и CO.

Настоящее изобретение поясняется конкретными примерами выполнения, которые, однако, не являются единственно возможными, но наглядно демонстрируют возможность достижения совокупностью существенных признаков предлагаемого способа технического результата поставленной задачи.

Примеры осуществления предлагаемого в настоящем изобретении способа.

Пример 1.

При соотношении водяного пара к отработанному активированному углю, равном 1,3 к 1 на 40 кг отработанного активированного угля, берут 52 кг водяного пара. 10 кг водяного пара вводят в плазмотрон постоянного тока, получают низкотемпературную паровую плазму, которую направляют в емкость, где смешивают с оставшимися 42 кг водяного пара. Путем смешивания водяного пара, находящегося в емкости, с низкотемпературной паровой плазмой, выходящей из плазмотрона, получают нагретую до 1000°С струю реакционного пара, которую направляют в реактор, где продувают находящийся в нем отработанный активированный уголь. После контакта высокотемпературного реакционного пара с углем образуется газообразная смесь, содержащая CO+H2 , который поступает на сжигание. В реакторе остается зольный остаток, состоящий из золы угля и минеральных примесей загрязнений.

Пример 2.

На 40 кг отработанного активированного угля берут 60 кг водяного пара. 10 кг водяного пара вводят в плазмотрон, получают низкотемпературную паровую плазму, которую направляют в емкость, где смешивают с оставшимися 50 кг водяного пара. Путем смешивания водяного пара, находящегося в емкости, с низкотемпературной паровой плазмой, выходящей из плазмотрона, получают нагретую до 1200°С струю реакционного пара, которую направляют в реактор, где продувают находящийся в нем отработанный активированный уголь. После контакта высокотемпературного реакционного пара с углем образуется газообразная смесь, содержащая CO+H 2, который поступает на сжигание. В реакторе остается зольный остаток, состоящий из золы угля и минеральных примесей загрязнений.

Соотношение водяного пара 1,3-1,5 кг на 1 кг отработанного активированного угля соответствует оптимальному значению для реакции получения высоко реактивного реакционного газа, содержащего оксид углерода и водород при осуществлении нижеследующей реакции

C+H2O=CO+H2

Предлагаемое соотношение водяного пара и отработанного активированного угля позволяет свести к минимуму содержание в реакционном газе, выходящем из смесителя, водяного пара, присутствие которого в значительных количествах снижает калорийность получаемого топлива.

Указанные существенные признаки предлагаемого в настоящем изобретении способа взаимосвязаны между собой причинно-следственной связью и являются достаточными для достижения технического результата поставленной задачи - получение калорийного топлива, содержащего газообразную смесь водорода и оксида углерода.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ обезвреживания отработанного активированного угля с получением калорийного топлива термической обработкой водяным паром, включающий разделение водяного пара на два потока, часть которого поступает в плазмотрон постоянного тока, из которого полученную низкотемпературную паровую плазму направляют в емкость, где при смешивании с остальной частью водяного пара получают высокотемпературную струю реакционного газа с температурой 1000-1200°С, которой при расходе 1,3-1,5 кг водяного пара на 1 кг активированного угля продувают активированный уголь и получают газообразную смесь, содержащую H2 и CO.


Скачать патент РФ Официальная публикация
патента РФ № 2458860

patent-2458860.pdf
Патентный поиск по классам МПК-8:

Класс C01B31/08 активированный уголь 

Патенты РФ в классе C01B31/08:
способ получения модифицированного активного угля -  патент 2529233 (27.09.2014)
способ функционализации углеродных наноматериалов -  патент 2529217 (27.09.2014)
способ получения активного угля из растительных отходов -  патент 2527221 (27.08.2014)
пористые угреродные композиционные материалы и способ их получения, а также адсорбенты, косметические средства, средства очистки и композиционные фотокаталитические материалы, содержащие их -  патент 2521384 (27.06.2014)
способ получения активного угля на основе антрацита -  патент 2518964 (10.06.2014)
способ получения углеродного адсорбента -  патент 2518579 (10.06.2014)
магнитоуправляемый сорбент для удаления эндо- и экзотоксинов из организма человека -  патент 2516961 (20.05.2014)
способ дообработки питьевой воды -  патент 2510887 (10.04.2014)
способ получения хемосорбента -  патент 2510868 (10.04.2014)
способ получения активных углей из шихт коксохимического производства -  патент 2507153 (20.02.2014)

Класс C10J3/46 газификация гранулированного или пылевидного топлива в суспензии 

Патенты РФ в классе C10J3/46:
способ газификации углеродосодержащих твердых видов топлива -  патент 2521638 (10.07.2014)
способ и устройство для переработки co2-содержащих отработанных газов -  патент 2467789 (27.11.2012)
устройство для получения газового продукта из такого топлива как биомасса -  патент 2467055 (20.11.2012)
горелка для хорошо коксующихся углей (варианты) и газификатор, содержащий такую горелку -  патент 2442930 (20.02.2012)

горелка для хорошо коксующихся углей и газификатор -  патент 2442818 (20.02.2012)

способ пуска газификатора угля и устройство пуска для него -  патент 2434932 (27.11.2011)
способ псевдодетонационной газификации угольной суспензии в комбинированном цикле "icsgcc" -  патент 2433282 (10.11.2011)
способ получения монооксида углерода (варианты) -  патент 2427533 (27.08.2011)
способ получения синтез-газа и устройство для его осуществления -  патент 2420561 (10.06.2011)
способ получения генераторного газа из твердого топлива в слоевом газогенераторе, обеспечивающий при сжигании газа уменьшение выбросов оксидов азота -  патент 2406751 (20.12.2010)

Класс C01B3/02 получение водорода или газовых смесей, содержащих водород

Патенты РФ в классе C01B3/02:
способ переработки углеводородного газа в стабильные жидкие синтетические нефтепродукты и энергетический комплекс для его осуществления -  патент 2527536 (10.09.2014)
комплексная установка для переработки газа -  патент 2524720 (10.08.2014)
способ и устройство для получения синтез-газа с низким содержанием смол из биомассы -  патент 2516533 (20.05.2014)
способ и установка для получения синтез-газа -  патент 2509052 (10.03.2014)
малотоннажная установка по утилизации ресурсов малых месторождений природного газа -  патент 2505586 (27.01.2014)
способ получения синтез-газа для синтеза аммиака -  патент 2479484 (20.04.2013)
многостадийный способ получения водородосодержащего газообразного топлива и теплогазогенераторная установка его реализации (способ аракеляна г.г.) -  патент 2478688 (10.04.2013)
способ получения синтез-газа для синтеза аммиака -  патент 2478564 (10.04.2013)
способ комплексной переработки газообразного углеродсодержащего сырья (варианты) -  патент 2473663 (27.01.2013)
низкоэнергетический способ для получения аммиака или метанола -  патент 2461516 (20.09.2012)

Класс B01J20/34 регенерация или реактивация

Патенты РФ в классе B01J20/34:
регенерация очистительных слоев с помощью струйного компрессора в открытом контуре -  патент 2527452 (27.08.2014)
способ очистки воды от силикатов -  патент 2526986 (27.08.2014)
поглощение летучих органических соединений, образованных из органического материала -  патент 2516163 (20.05.2014)
регенеративная очистка предварительно обработанного потока биомассы -  патент 2508929 (10.03.2014)
удаление загрязняющих веществ из газовых потоков -  патент 2501595 (20.12.2013)
фильтр для очистки воды на основе активированного угля и способ его регенерации -  патент 2499770 (27.11.2013)
устройство для очистки сточных вод и питьевой воды от радионуклидов и вредных химических элементов -  патент 2494969 (10.10.2013)
способ адсорбционной очистки сложных алкиловых эфиров метакриловой кислоты -  патент 2460718 (10.09.2012)
способ и устройство для уменьшения попадания наночастиц активированного угля в смесь воды и этилового спирта -  патент 2454264 (27.06.2012)
адсорбент десульфуризатор для жидких фаз -  патент 2448771 (27.04.2012)

Наверх