способ получения алмазного композиционного материала

Классы МПК:B01J3/06 способы, использующие сверхвысокое давление, например для образования алмазов; устройства для этой цели, например матрицы
C01B31/06 алмаз 
C04B35/52 на основе углерода, например графита
C04B35/645 спекание под давлением
B24D3/06 металлов 
C22C26/00 Сплавы, содержащие алмаз
Автор(ы):, , , ,
Патентообладатель(и):Федеральное государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" (RU)
Приоритеты:
подача заявки:
2011-02-14
публикация патента:

Изобретение относится к области получения алмазных композиционных материалов (композитов), состоящих из плотной массы кристаллов алмаза, связанных связующим материалом. Способ включает размещение в контакте друг с другом слоя алмазного порошка и слоя связующего материала и воздействие на слои давлением и нагревом для уплотнения алмазных порошков и пропитки их связующим материалом следующего состава в вес.%: Si - 50÷70; Ni - 25÷45 и Ti - 3÷10. Уплотнение слоя алмазного порошка и пропитку связующим материалом проводят при давлениях 2,0÷4,0 ГПа и температурах 1000÷1300°С. Способ позволяет проводить пропитку порошков при более низких давлениях и температурах и получать высокопрочный и ударостойкий материал больших размеров. 1 з.п. ф-лы.

Изобретение относится к области получения алмазных композиционных материалов (композитов), состоящих из плотной массы кристаллов алмаза, связанных связующим материалом. Такие материалы используются в качестве режущих элементов в инструментах, таких как резцы, фрезы, сверла, буровой инструмент, правящий инструмент и т.п. Материал может быть также использован для изготовления волок, сопел и других износостойких изделий.

Одним из способов получения композиционных материалов является пропитка слоя алмазных зерен связующим материалом под действием давления и при температуре, при которой связующий материал приобретает жидкотекучесть. Жидкотекучий пропиточный материал проникает в капилляры плотно уложенных алмазных зерен, заполняет свободные пространства между ними и обеспечивает их прочную связь друг с другом.

Известен способ изготовления алмазных композиционных материалов, заключающийся в пропитке алмазного порошка кремнием. Пропитку осуществляют при давлении 1000 мм рт.ст. и при температурах в диапазоне 1420-1700°С. Проведение процесса пропитки при таких температурах и давлениях вызывает частичную графитизацию алмазных зерен, приводящую к снижению износостойкости материала.

Известны способы получения алмазных композиционных материалов, заключающиеся в пропитке алмазного порошка связующим материалом, в качестве которого используют сплавы кремния с различными добавками. В патенте RU 2151814, кл B24D 3/10, 1999 г., в патенте US 6447852, кл. С04В 35/573, 2002 г. предлагается пропитку производить сплавом кремния с добавками, выбранным из группы Ti, Zr, Hf, Nb, Та, Сr, Mo, W, Mn, Re, Fe, Co, Ni, Cu, Ag, Al и др. Указанные добавки вводят в кремний для получения сплавов с более низкой температурой плавления, что делает возможным проводить пропитку алмазного порошка при более низких температурах. В тоже время введением добавок можно получать материал с различными физико-механическими свойствами алмазного композиционного материала.

Наиболее близким техническим решением является способ получения алмазного композиционного материала, при котором уплотненный слой алмазного порошка пропитывают связующим материалом, содержащим кремний и никель, взятые в вес. соотношении 82:18 - патент US 4534773, кл. B01J 3/00, 1985 г. Процесс пропитки осуществляют в температурном диапазоне 1400-1600°С и при давлении 50-70 кбар.

Изготовления алмазного композиционного материала при высоких давлениях и температурах осуществляют в камерах высокого давления с твердосплавной оснасткой. Получают алмазный материал, имеющий высокую термостойкость и износостойкость.

Существенным недостатком способа является проведение процесса в камерах высокого давления с твердосплавной оснасткой при высоких давлениях и высоких температурах, которые требуются для обеспечения полной пропитки уплотненных алмазных порошков связующим, состоящим из кремния и никеля. В то же время необходимость создания высоких давлений ограничивает объем камеры, не позволяя получать материалы больших размеров. Температуры 1400-1600°С обеспечивают необходимую жидкотекучесть связующего, однако приводят к графитизации алмазных зерен и снижению ударостойкости композиционного материала.

Технической задачей изобретения является создание способа, при котором алмазный композиционный материал получают при давлениях не выше 4 ГПа и при более низких температурах в камерах высокого давления со стальной оснасткой, а также получение высокопрочного и ударостойкого материала больших размеров.

Решение технической задачи заключается в том, что в способе получения алмазного композиционного материала, включающем размещение в контакте друг с другом слоя алмазного порошка и слоя связующего материала и воздействие на слои давлением и температурой для уплотнения алмазных порошков и пропитки их связующим материалом, включающим кремний и никель, в связующий материал дополнительно вводят Ti, при этом компоненты связующего материала берут в следующем процентном соотношении по весу: Si - 50÷70; Ni - 25÷45 и Ti - 3÷10.

Уплотнение алмазного порошка и пропитку связующим материалом проводят при давлениях 2,0÷4,0 ГПа и температурах 1000÷1300°С.

Титан, введенный в связующий материал, улучшает жидкотекучесть и смачиваемость связующего материала и тем самым обеспечивает более глубокое и полное его проникновение в поры сжатой массы алмазного порошка при невысоких давлениях 2,0÷4,0 ГПа. Снижение давления до уровня 2,0÷4,0 ГПа создает условия для изготовления алмазного композиционного материала больших размеров. Связующий материал состава Si - 50÷70% вес.; Ni - 25÷45% вес. и Ti - 3÷10% вес. имеет высокую жидкотекучесть и хорошую смачиваемость уже при температурах 1000÷1300°С. В диапазоне этих температур, существенно более низких, чем в известном способе, графитизация алмазных зерен очень незначительна. В тоже время Ti, являясь хорошим геттером газообразных примесей, которые могут находиться в исходных порошках, и обладая сильной связью с углеродом, улучшает механическое и химическое связывание алмазных зерен со связующим материалом. Связующий материал образует с алмазными зернами прочную, менее хрупкую связь, повышая его ударостойкость.

Способ получения алмазного композиционного материала осуществляется следующим образом.

Алмазный порошок предварительно подвергают очистке для удаления с его поверхности каких-либо примесей. Из компонентов, входящих в состав связующего материала, готовят сплав, из которого получают порошки, используемые для пропитки алмазных порошков. В графитовый нагреватель помещают слой алмазного порошка и слой порошков связующего материала. Нагреватель помещают в стальную камеру аппарата высокого давления. Сборку подвергают давлению 2,0÷4,0 ГПа с одновременным нагревом до температуры 1000÷1300°С. В условиях воздействия давлений и температур алмазные зерна порошка сближаются друг с другом до образования слоя сжатой массы алмазных зерен, а пропиточный материал расплавляется, приобретает необходимую жидкотекучесть и проникает в свободные пространства между алмазными зернами, заполняя их. Время полной пропитки алмазного порошка составляет 15-60 сек.

В качестве исходного алмазного сырья для получения композиционного материала могут быть использованы натуральные и синтетические алмазные порошки или их смеси. Размер алмазных порошков может варьироваться в широком диапазоне от 1 мкм до 1000 мкм, но наиболее предпочтительными для получения композиционного материала являются алмазные порошки зернистостью от 3/2 до 40/28. Для получения материала с высокой концентрацией алмаза можно использовать смесь алмазных порошков двух или трех зернистостей.

Соотношение компонентов связующего материала: Si - 50÷70% вес.; Ni - 25÷45% вес. и Ti - 3÷10% вес. обеспечивает температуру плавления связующего материала в диапазоне 1000÷1300°С и жидкотекучесть, при которой связующий материал легко проникает в поры спрессованного брикета алмазных зерен на его полную глубину при давлениях 2,0-4,0 ГПа. По окончании пропитки получают высокопрочный термостойкий алмазный композиционный материала с высокой ударостойкостью.

Содержание кремния в связующем материале ниже 50% вес. приведет к снижению термостойкости материала, а при содержании кремния выше 70% вес. в композите присутствуют включения чистого кремния. Поскольку кремний кристаллизуется с увеличением объема, то происходит образование зародышевых трещин, которые приводят к разрушению алмазного материала. Выход годного композиционного материала снижается. Содержание никеля в диапазоне 25-45% вес. способствует получению сплава с температурой плавления 1000÷1300°С и получению высокопрочного композиционного материала. Более низкое содержание никеля ниже 25% вес. не окажет существенного влияния на снижение температуры плавления связующего материала, но снизит прочностные характеристики изготавливаемого материала, увеличение содержания никеля выше 45% вес. снизит термостойкость алмазного композиционного материала и приведет к его охрупчиванию из-за большого количества образующейся в композиционном материале хрупкой фазы (Si-Ni). Ti предлагается вводить в связующий материал в количестве 3÷10% вес. Уменьшение содержания титана ниже 3% вес. несущественно повысит жидкотекучесть и смачиваемость связующего материала, увеличение содержания Ti выше 10% вес. приведет к снижению прочностных характеристик материала.

Количество связующего материала выбирают таким образом, чтобы заполнить все свободные пространства (поры) между алмазными порошками после их уплотнения. Общая пористость слоя из уплотненных алмазных частиц в большей степени зависит от зернистости алмазного порошка, от плотности упаковки.

Давление прессования должно обеспечить необходимую плотность алмазного композиционного материала и обеспечить проникновение связующего материала в поры алмазного каркаса. Величину давления выбирают в диапазоне 2,0÷4,0 ГПа. Давление ниже 2,0 ГПа приводит к снижению прочностных характеристик материала из-за уменьшения плотности алмазного каркаса. Давление выше 4,0 ГПа использовать нерационально, т.к. при давлении 4,0 ГПа достигается необходимая плотность алмазного композиционного материала и обеспечивается полная пропитка алмазного слоя связующим материалом. В то же время получение более высоких давлений возможно при снижении рабочего объема камеры устройства, используемого для изготовления алмазного материала, в результате чего получение алмазного композиционного материала больших размеров становится проблематичным.

Были изготовлены образцы в виде цилиндров алмазного композиционного материала со связующим материалом следующих составов:

1. Si - 50% вес. и Ni - 50% вес.

2. Si - 60% вес. и Ni - 40% вес.

3. Si - 50% вес., Ni - 45% вес., Ti - 5% вес.

4. Si - 70% вес., Ni - 27% вес., Ti - 3% вес.

5. Si - 60% вес., Ni - 30% вес., Ti - 10% вес.

6. Si - 70% вес., Ni - 25% вес., Ti - 5% вес.

Прессование и пропитку проводили при давлениях Р=2,0-4,0 ГПа и при температурах Т=1000-1300°С в течение 15-60 сек. Осуществляли пропитку алмазных заготовок (сжатых алмазных порошков) способ получения алмазного композиционного материала, патент № 2446870 =8 мм и h=5 мм.

Пропитка связующими составами по примерам 1 и 2 прошла не полностью из-за недостаточной жидкотекучести связующего.

Связующий материал по примерам 3, 4, 5, 6 просочился в поры заготовки на полную глубину. Этими же составами пропитывали заготовки способ получения алмазного композиционного материала, патент № 2446870 =10 мм и h=7 мм. Пропитка прошла на полную глубину.

У образцов по примерам 1 и 2 из-за повышенной хрупкости композиционного материала выход годных композитов после механической обработки составил 52%; у образцов по примерам 3, 4, 5, 6 выход годных составил 60%.

Таким образом, введение титана в связующий материал на основе кремний - никель и выбранное соотношение всех компонентов связующего обеспечивает пропитку плотно уложенных алмазных порошков на полную высоту слоя при более низких температурах и давлениях, которые могут быть получены на оборудовании со стальными камерами, и получить высокопрочный ударостойкий материал. Использование стальных камер в совокупности с низкими температурами и давлениями позволяет изготавливать алмазный композиционный материал больших размеров, который находит широкое применение как в режущих инструментах, так и в качестве прочных износостойких заготовок, например, для изготовления волок для протягивания проволоки, сопел для пескоструйных аппаратов, нитеводителей в текстильном производстве, подшипников скольжения, опорных элементов для длинномерных деталей при их обработке и т.п.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ получения алмазного композиционного материала, включающий размещение в контакте друг с другом слоя алмазного порошка и слоя связующего материала и воздействие на слои давлением и температурой для уплотнения алмазных порошков и пропитки их связующим материалом, включающим кремний и никель, отличающийся тем, что в связующий материал дополнительно вводят Ti, при этом компоненты связующего материала берут в следующем процентном соотношении по весу: Si 50÷70; Ni 25÷45 и Ti 3÷10.

2. Способ по п.1, отличающийся тем, что уплотнение слоя алмазного порошка и пропитку связующим материалом проводят при давлении 2,0÷4,0 ГПа и температуре 1000÷1300°С.


Скачать патент РФ Официальная публикация
патента РФ № 2446870

patent-2446870.pdf
Патентный поиск по классам МПК-8:

Класс B01J3/06 способы, использующие сверхвысокое давление, например для образования алмазов; устройства для этой цели, например матрицы

Патенты РФ в классе B01J3/06:
поликристаллический алмаз -  патент 2522028 (10.07.2014)
способ получения сверхтвердого композиционного материала -  патент 2491987 (10.09.2013)
устройство высокого давления и высоких температур -  патент 2491986 (10.09.2013)
способ получения поликристаллического материала на основе кубического нитрида бора, содержащего алмазы -  патент 2484888 (20.06.2013)
способ синтеза алмазов, алмазных поликристаллов -  патент 2476376 (27.02.2013)
способ получения алмазов -  патент 2469952 (20.12.2012)
способ получения нитевидных алмазов -  патент 2469781 (20.12.2012)
устройство для очистки и модификации наноалмаза -  патент 2452686 (10.06.2012)
способ изготовления поликристаллического кубического нитрида бора с мелкозернистой структурой -  патент 2450855 (20.05.2012)
способ получения поликристаллического материала на основе кубического нитрида бора -  патент 2449831 (10.05.2012)

Класс C01B31/06 алмаз 

Класс C04B35/52 на основе углерода, например графита

Патенты РФ в классе C04B35/52:
поликристаллический алмаз -  патент 2522028 (10.07.2014)
способ изготовления изделий из композиционных материалов -  патент 2521170 (27.06.2014)
корпусная или внутренняя деталь аппарата, снабженная выступающими частями, способ ее изготовления и устройство для формирования и насыщения пироуглеродом каркасов закладных элементов, образующих выступающие части -  патент 2515878 (20.05.2014)
способ изготовления изделий из композиционного материала -  патент 2510386 (27.03.2014)
токосъемная вставка токоприемника электротранспортного средства и способ ее изготовления -  патент 2510339 (27.03.2014)
армирующий каркас углерод-углеродного композиционного материала -  патент 2498962 (20.11.2013)
способ изготовления изделия из композиционного материала -  патент 2497782 (10.11.2013)
способ изготовления изделий из углерод-карбидокремниевого материала -  патент 2494962 (10.10.2013)
способ изготовления изделий из углерод-карбидокремниевого материала -  патент 2494043 (27.09.2013)
способ изготовления изделий из углерод-карбидокремниевого материала -  патент 2494042 (27.09.2013)

Класс C04B35/645 спекание под давлением

Класс B24D3/06 металлов 

Патенты РФ в классе B24D3/06:
абразивное изделие (варианты) и способ его формирования -  патент 2511015 (10.04.2014)
связка на основе меди для изготовления режущего инструмента со сверхтвердым материалом -  патент 2487006 (10.07.2013)
связка на основе меди для изготовления режущего инструмента со сверхтвердым материалом -  патент 2487005 (10.07.2013)
способ изготовления режущих элементов из сверхтвердых материалов -  патент 2484941 (20.06.2013)
способ изготовления алмазометаллического композита методом взрывного прессования -  патент 2484940 (20.06.2013)
способ получения абразивного инструмента из сверхтвердых материалов -  патент 2457935 (10.08.2012)
алмазометаллический композит -  патент 2448827 (27.04.2012)
связка на основе меди для изготовления алмазного инструмента -  патент 2432249 (27.10.2011)
алмазный инструмент на гальванической связке -  патент 2432248 (27.10.2011)
связка на основе меди для изготовления алмазного инструмента -  патент 2432247 (27.10.2011)

Класс C22C26/00 Сплавы, содержащие алмаз



Наверх