железооксидный катализатор для термолиза тяжелого углеводородного сырья

Классы МПК:B01J23/745 железо
B01J23/881 и железом
C10G11/08 галогениды 
C10G51/04 включая только ступени термического и каталитического крекинга
C10G49/02 отличающаяся используемыми катализаторами
Автор(ы):, , ,
Патентообладатель(и):Учреждение Российской академии наук Институт химии и химической технологии Сибирского отделения РАН (ИХХТ СО РАН) (RU)
Приоритеты:
подача заявки:
2010-08-04
публикация патента:

Изобретение относится к области катализа и может быть использовано в качестве катализатора в процессе термолиза тяжелых нефтей и нефтяных остатков. Описан железооксидный катализатор для процесса термолиза тяжелого углеводородного сырья, позволяющий увеличить выход светлых фракций и не требующий для проведения процесса использования пара или водорода, который представляет собой микросферический магнитный продукт, выделенный из летучих зол от пылевидного сжигания бурого или каменного угля, фракционированный по размеру в диапазоне 0,05-0,4 мм, состоящий на 80-90 мас.% из оксида железа, остальное - оксиды кремния, алюминия, кальция, магния, натрия, калия, марганца, серы, и в котором оксид железа распределен между двумя железосодержащими фазами: 13,0-34,5 мас.% феррошпинели и 35,0-63,0 мас.% гематита. Технический результат - получен катализатор, обладающий повышенной активностью в процессе крекинга тяжелого углеводородного сырья. 2 табл.

Формула изобретения

Железооксидный катализатор для процесса термолиза тяжелого углеводородного сырья, позволяющий увеличить выход светлых фракций и не требующий для проведения процесса использования пара или водорода, отличающийся тем, что представляет собой микросферический магнитный продукт, выделенный из летучих зол от пылевидного сжигания бурого или каменного угля, фракционированный по размеру в диапазоне 0,05-0,4 мм, состоящий на 80-90 мас.% из оксида железа, остальное - оксиды кремния, алюминия, кальция, магния, натрия, калия, марганца, серы, и в котором оксид железа распределен между двумя железосодержащими фазами: 13,0-34,5 мас.% феррошпинели и 35,0-63,0 мас.% гематита.

Описание изобретения к патенту

Изобретение относится к области катализа и может быть использовано в качестве катализатора в процессе термолиза тяжелых нефтей и нефтяных остатков для увеличения выхода светлых фракций без использования в процессе термолиза пара или водорода.

Известны катализаторы на основе оксидов железа для получения более легких фракций углеводородов в процессах крекинга тяжелого нефтяного сырья. Известны как синтетические катализаторы, а также техногенного или рудного происхождения. Известные катализаторы проявляют активность в процессах термического крекинга тяжелых углеводородов, если с сырьем одновременно подается пар или водород (процесс гидрокрекинга).

Известен катализатор для переработки мазута, представляющий собой железнорудные окатыши [Авт. свидетельство СССР № 1824422, C10G 69/06, опубл. 1993]. В присутствии этого катализатора при термолизе смеси мазута с паром при температурах 530-600°C и с последующей дополнительной стадией гидроочистки полученной отбензиненной газойлевой фракции выход светлых продуктов составляет 46-72 мас.%.

Известен катализатор для процесса крекинга тяжелых углеводородов в легкую нефть с одновременным получением водорода, содержащий не менее 30 вес.% железа в форме оксида, например: латеритовая руда [Патент США № 4421635, C10G 47/04, опубл. 1983]. На катализатор, предварительно переведенный в восстановленное состояние, при температурах 500-800°C подается сырье с паром. Выход светлых фракций составляет 8,3-11,5 вес.%.

Известен катализатор для конверсии тяжелой углеводородной нефти в легкую углеводородную нефть, представляющий синтетический или природный оксид железа, например: гематит, лимонит [Патент Японии № 56118490 (А), C10G 47/02, C10G 47/00, опубл. 1981]. Гидрогенолиз сырья проводят при температурах 380-480°C и давлении водорода 50-300 ати в присутствии 0,1-20 вес.% катализатора. Выход бензиновой фракции составляет 13,1-13,6 вес.%, выход дизельной фракции не приводится.

Недостатком вышеприведенных катализаторов является их невысокая активность, вследствие чего процесс термолиза тяжелого углеводородного сырья необходимо проводить либо при достаточно высоких температурах 500-800°C, при этом катализатор используется в восстановленном состоянии для получения водорода в реакционной зоне при подаче пара вместе с сырьем, либо процесс проводить при меньших температурах, 360-450°C, но с подачей водорода под высоким, 20-300 атм, давлением.

Наиболее близким к заявляемому изобретению является катализатор для получения в многостадийном процессе легкой нефти из тяжелой нефти с одновременным получением металлического железа, представляющий собой железосодержащую руду типа магнетита, гематита, лимонита и др. [Патент США № 4897179, C10G 11/12; C10G 11/18, опубл. 1990]. На первой стадии проводят процесс крекинга тяжелой нефти в присутствии катализатора при 600-700°C. Выходы светлых продуктов не приводятся. Очевидным недостатком этого катализатора является невысокая активность, так как процесс ведется при высоких температурах. Кроме того, катализатор рудного происхождения представляет собой не стабилизированный по составу продукт, характеристики которого могут меняться.

При создании изобретения - железооксидного катализатора для термолиза тяжелого углеводородного сырья ставилась задача повышения его деструктивной активности в отношении высокомолекулярных углеводородных соединений тяжелого нефтяного сырья, что позволило бы проводить процесс термолиза при более низких, ниже 500°C, температурах и без использования в процессе пара или водорода.

Задача достигается тем, что в качестве железосодержащего катализатора используется микросферический магнитный продукт из летучей золы от пылевидного сжигания бурого или каменного угля. Катализатор используется фракционированный по размеру в диапазоне 0,05-0,4 мм, состоит на 80-90 мас.% из оксида железа, остальное - оксиды кремния, алюминия, кальция, магния, натрия, калия, марганца, серы, и в котором оксид железа распределен между двумя железосодержащими фазами: катализатор содержит 13,0-34,5 мас.% феррошпинели и 35,0-63,0 мас.% гематита.

Выделение микросферических магнитных продуктов из летучей золы от сжигания энергетических углей известно [Кизильштейн Л.Я., Калашников А.С. Магнетитовые микрошарики из золы-уноса пылевидного сжигания углей на ТЭС // Химия твердого топлива. - 1991. - № 6. - С.128-134]. Предлагаемый железооксидный катализатор для термолиза тяжелого нефтяного сырья представляет микросферический магнитный продукт, фракционированный по размеру в диапазоне 0,05-0,4 мм, состоит на 80-90 мас.% из оксида железа, остальное - оксиды кремния, алюминия, кальция, магния, натрия, калия, марганца, серы. Оксид железа в катализаторе распределен между двумя железосодержащими фазами: феррошпинелью и гематитом. Микросферические магнитные продукты из летучей золы от сжигания бурого и каменного углей выделяли из магнитных концентратов, получаемых сепарацией золы в магнитном поле. Высокообогащенный по железу концентрат из летучей золы бурого угля, с содержанием железа в пересчете на Fe 2O3 84,56 мас.%, далее разделяли по схеме, которая включает стадию гранулометрической классификации (рассев на ситах) на определенные фракции и стадию сухой магнитной сепарации полученных фракций. Схема разделения магнитного концентрата из летучей золы каменного угля, с содержанием железа в пересчете на Fe2 O3 41,56 мас.%, перед стадиями сухой магнитной сепарации, для выделения тяжелой фракции, включает дополнительные стадии гидростатического разделения и гидродинамического разделения в восходящем потоке воды. В результате получают катализатор - фракционированный по размерам микросферический магнитный продукт: ММПБ (микросферический магнитный продукт из золы бурого угля) и ММПК (микросферический магнитный продукт из золы каменного угля), химический состав которых приведен в таблице 1. Катализатор используется в окисленном состоянии, в количестве 10-20 мас.% по отношению к сырью, перед проведением термолиза тяжелого углеводородного сырья катализатор прокаливается в воздушной атмосфере при 800°C в течение 2-6 часов. Фазовый состав полученных магнитных продуктов и после окислительной тренировки приведен в таблице 2.

железооксидный катализатор для термолиза тяжелого углеводородного   сырья, патент № 2442648

железооксидный катализатор для термолиза тяжелого углеводородного   сырья, патент № 2442648

Пример 1. Железооксидный катализатор, представляющий микросферический магнитный продукт, фракция -0,16+0,1 (мм), выделенный из магнитного концентрата летучей золы от сжигания бурого угля, по химическому составу на 90,36 мас.% в пересчете на Fe2O3 состоящий из железа, остальное оксиды кремния, алюминия, кальция, магния, натрия, калия, марганца, серы (табл.1, обр.1) и содержащий после предварительной тренировки 14,7 мас.% феррошпинели, 55,5 мас.% гематита (табл.2, обр.1), загружается в автоклав в количестве 10 мас.% по отношению к мазуту. Термолиз мазута проводится при 450°С, 2 часа. Выход продуктов дистилляции из обработанного мазута составляет: фракция, выкипающая до 200°C, - 4 мас.%, сумма светлых продуктов составляет 28 мас.%.

Пример 2. Железооксидный катализатор, представляющий микросферический магнитный продукт, фракция -0,4+0,2 (мм), выделенный из магнитного концентрата летучей золы от сжигания бурого угля, по химическому составу на 85,2 мас.% в пересчете на Fe2O3 состоящий из железа, остальное - оксиды кремния, алюминия, кальция, магния, натрия, калия, марганца, серы (табл.1, обр.2) и содержащий после предварительной тренировки 13,1 мас.% феррошпинели, 63,0 мас.% гематита (табл.2, обр.2), загружается в автоклав в количестве 20 мас.% по отношению к мазуту. Термолиз мазута проводится при 450°C, 2 часа. Выход продуктов дистилляции из обработанного мазута составляет: фракция, выкипающая до 200°C, - 14,5 мас.%, сумма светлых продуктов составляет 51,0 мас.%.

Пример 3. Железооксидный катализатор, представляющий микросферический магнитный продукт, фракция -0,063+0,05 (мм), выделенный из магнитного концентрата летучей золы от сжигания каменного угля, по химическому составу на 81,67 мас.% в пересчете на Fe2O3 состоящий из железа, остальное оксиды кремния, алюминия, кальция, магния, натрия, калия, марганца, серы (табл.1, обр.3) и содержащий после предварительной тренировки 34,6 мас.% феррошпинели, 35,3 мас.% гематита (табл.2, обр.3), загружается в автоклав в количестве 10 мас.% по отношению к мазуту. Термолиз мазута проводится при 450°С, 2 часа. Выход продуктов дистилляции из обработанного мазута составляет: фракция, выкипающая до 200°C, - 13,5 мас.%, сумма светлых продуктов составляет 47,0 мас.%.

Пример 4. Железооксидный катализатор, представляющий микросферический магнитный продукт, фракция -0,4+0,2 (мм), выделенный из магнитного концентрата летучей золы от сжигания бурого угля, по химическому составу на 85,2 мас.% в пересчете на Fe2O3 состоящий из железа, остальное - оксиды кремния, алюминия, кальция, магния, натрия, калия, марганца, серы (табл.1, обр.2) и содержащий после предварительной тренировки 13,1 мас.% феррошпинели, 63,0 мас.% гематита (табл.2, обр.2), загружается в автоклав в количестве 10 мас.% по отношению к тяжелой нефти. Термолиз нефти проводится при 450°С, 2 часа. Выход продуктов дистилляции из обработанной нефти составляет: фракция, выкипающая до 200°C, - 25,0 мас.%, сумма светлых продуктов составляет 70,0 мас.%.

Пример 5. Железооксидный катализатор, представляющий микросферический магнитный продукт, фракция -0,063+0,05 (мм), выделенный из магнитного концентрата летучей золы от сжигания каменного угля, по химическому составу на 81,67 мас.% в пересчете на Fe2O3 состоящий из железа, остальное оксиды кремния, алюминия, кальция, магния, натрия, калия, марганца, серы (табл.1, обр.3) и содержащий после предварительной тренировки 34,6 мас.% феррошпинели, 35,3 мас.% гематита (табл.2, обр.3), загружается в автоклав в количестве 10 мас.% по отношению к тяжелой нефти. Термолиз нефти проводится при 450°C, 2 часа. Выход продуктов дистилляции из обработанной нефти составляет: фракция, выкипающая до 200°C - 27,0 мас.%, сумма светлых продуктов составляет 75,0 мас.%.

Класс B01J23/745 железо

каталитическая система в процессе термолиза тяжелого нефтяного сырья и отходов добычи и переработки нефти -  патент 2524211 (27.07.2014)
катализатор для избирательного окисления монооксида углерода в смеси с аммиаком и способ его получения (варианты) -  патент 2515529 (10.05.2014)
катализатор для дегидрирования алкилароматических углеводородов -  патент 2509604 (20.03.2014)
способ получения каталитически активных магниторазделяемых наночастиц -  патент 2506998 (20.02.2014)
способ извлечения молибдена и церия из отработанных железооксидных катализаторов дегидрирования олефиновых и алкилароматических углеводородов -  патент 2504594 (20.01.2014)
мобильный катализатор удаления nox -  патент 2503498 (10.01.2014)
способ получения катализатора синтеза углеводородов и его применение в процессе синтеза углеводородов -  патент 2502559 (27.12.2013)
применение твердых веществ на основе феррита цинка в способе глубокого обессеривания кислородсодержащего сырья -  патент 2500791 (10.12.2013)
способ изготовления каталитически активных геометрических формованных изделий -  патент 2495719 (20.10.2013)
способ изготовления каталитически активных геометрических формованных изделий -  патент 2495718 (20.10.2013)

Класс B01J23/881 и железом

каталитическая система в процессе термолиза тяжелого нефтяного сырья и отходов добычи и переработки нефти -  патент 2524211 (27.07.2014)
способ активации катализаторов гидроочистки дизельного топлива -  патент 2500475 (10.12.2013)
способ получения катализатора окисления метанола до формальдегида -  патент 2458738 (20.08.2012)
корковый катализатор, предназначенный, в частности, для окисления метанола в формальдегид, и способ его изготовления -  патент 2393014 (27.06.2010)
способ получения катализатора окисления метанола до формальдегида -  патент 2388536 (10.05.2010)
катализатор для окисления метанола до формальдегида -  патент 2384365 (20.03.2010)
катализатор производства акрилонитрила -  патент 2347612 (27.02.2009)
приготовление катализатора гидроочистки -  патент 2244592 (20.01.2005)
способ приготовления катализатора для гидроочистки нефтяных дистиллятов -  патент 2179886 (27.02.2002)
способ приготовления катализатора паровой конверсии оксида углерода и катализатор паровой конверсии оксида углерода -  патент 2170615 (20.07.2001)

Класс C10G11/08 галогениды 

Класс C10G51/04 включая только ступени термического и каталитического крекинга

Класс C10G49/02 отличающаяся используемыми катализаторами

каталитическая система в процессе термолиза тяжелого нефтяного сырья и отходов добычи и переработки нефти -  патент 2524211 (27.07.2014)
способ переработки тяжелого углеводородного сырья -  патент 2495087 (10.10.2013)
способ переработки углеводородсодержащего сырья -  патент 2485168 (20.06.2013)
способ переработки углеводородсодержащего сырья (варианты) -  патент 2485167 (20.06.2013)
процесс изменения вязкости сырой нефти -  патент 2481389 (10.05.2013)
способ восстановления каталитической активности отработанного катализатора водородообработки, отработанный катализатор водородообработки, имеющий восстановленную каталитическую активность, и способ водородообработки -  патент 2372991 (20.11.2009)
способ восстановления каталитической активности отработанного катализатора водородообработки, отработанный катализатор водородообработки, имеющий восстановленную каталитическую активность, и способ водородообработки -  патент 2372143 (10.11.2009)
способ гидропереработки углеводородного сырья -  патент 2324725 (20.05.2008)
композиция, способ снижения способности к саморазогреву предварительно сульфурированного или сульфидированного катализатора, способ приготовления катализатора, способ гидрообработки, способ транспортировки и способ разгрузки катализатора -  патент 2129915 (10.05.1999)
Наверх