ПАТЕНТНЫЙ ПОИСК В РФ
НОВЫЕ ПАТЕНТЫ, ЗАЯВКИ НА ПАТЕНТ
БИБЛИОТЕКА ПАТЕНТОВ НА ИЗОБРЕТЕНИЯ

способ получения микрокристаллов нитрида алюминия

Классы МПК:C30B23/00 Выращивание монокристаллов конденсацией испаряемого или сублимируемого материала
C30B29/38 нитриды
C30B30/04 с использованием магнитных полей
B82B3/00 Изготовление или обработка наноструктур
Автор(ы):, , ,
Патентообладатель(и):Государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" (RU)
Приоритеты:
подача заявки:
2010-07-01
публикация патента:

Изобретение относится к области выращивания микромонокристаллов нитрида алюминия. Микрокристаллы нитрида алюминия получают из смеси газа и паров алюминия. Нанопорошок алюминия размещают между полюсами постоянного магнита и нагревают. Процесс осуществляют в атмосфере воздуха при давлении 1 атм в условиях теплового взрыва в магнитном поле постоянного магнита напряженностью 1500 эрстед. Изобретение позволяет получать гексагональный нитрид алюминия микронного размера, который может быть использован в качестве подложек для изготовления элементов наноэлектроники. 2 ил.

Рисунки к патенту РФ 2437968

способ получения микрокристаллов нитрида алюминия, патент № 2437968 способ получения микрокристаллов нитрида алюминия, патент № 2437968

Изобретение относится к области выращивания микромонокристаллов нитрида алюминия. Нитрид алюминия благодаря своим уникальным свойствам используется в электронике в качестве подложек (способ получения микрокристаллов нитрида алюминия, патент № 2437968 v~1013 Ом/м, способ получения микрокристаллов нитрида алюминия, патент № 2437968 ~300 Вт/м2с): он одновременно является изолятором и веществом, хорошо проводящим тепло. Изобретение относится к выращиванию монокристаллов в процессе испарения и конденсации в воздухе.

Известен способ получения (Патент РФ № 2330904, приор. 24.10.2005 г., C30B 23/00, C30B 29/38) монокристаллического нитрида алюминия из смеси азота и паров алюминия, включающий размещение в ростовой камере друг напротив друга подложки и источника паров алюминия, нагрев и поддержание рабочих температур источника и подложки, обеспечивающих соответственно образование паров алюминия в составе смеси и рост монокристалла нитрида алюминия на подложке, нагрев и поддержание рабочих температур осуществляют в атмосфере паров алюминия и азота с внешней стороны ростовой камеры.

Недостатком этого способа является необходимость использования вакуумного оборудования и для поддержания рабочих температур источника требуются высокие энергозатраты. Также недостатком является использование азота высокой чистоты, который является дорогостоящим сырьем.

Наиболее близким к предлагаемому способу является «Способ выращивания монокристаллического нитрида алюминия» (Патент РФ № 2330905, приор. 14.11.2005 г., C30B 23/00, C30B 29/38) из смеси азота и паров алюминия, включающий размещение в ростовой камере напротив друг друга подложки и источника паров алюминия, нагрев и поддержание рабочих температур источника и подложки, обеспечивающих соответственно образование паров алюминия в составе смеси, и рост монокристалла нитрида алюминия на подложке. Для очищения подложки и источника паров алюминия от летучих примесей предварительно осуществляют нагрев подложки до температуры 1500-1700°С при давлении не выше 10-3 мм рт.ст. Затем для подавления излишнего испарения и исключения возможности роста поликристаллов в ростовую камеру напускают азот до давления 0,9-1 атм, после чего продолжают нагрев до рабочей температуры.

Основным недостатком является эпитаксиальный рост нитрида алюминия и невозможность получения кристаллов микронного размерного диапазона. Также недостатком этого способа является необходимость использования вакуумного оборудования и для поддержания рабочих температур источника требуются высокие энергозатраты, использование азота высокой чистоты, который является дорогостоящим сырьем.

Задачей предлагаемого способа получения микрокристаллов нитрида алюминия является снижение размеров монокристаллов нитрида алюминия за счет проведения синтеза в атмосфере воздуха в условиях теплового взрыва, при котором происходят процессы испарения и конденсации продуктов.

Поставленная задача решается за счет того, что в способе выращивания монокристаллического нитрида алюминия из смеси азота и паров алюминия нагрев проходит в режиме теплового взрыва с образованием паров алюминия и их взаимодействием с азотом воздуха при давлении 1 атм. Процесс нагрева ведут в постоянном магнитном поле 1500 эрстед. Расстояние между полюсами магнита составляет 4,5 см. Действие магнитного поля осуществляется в течение всего цикла «нагрев-охлаждение».

Экспериментально установлено, что в условиях горения в режиме теплового взрыва максимальная температура достигает 2200-2400°С, при действии магнитного поля формируются микрокристаллы нитрида алюминия правильной гексагональной формы. В отсутствии магнитного поля формируются продукты округлой формы, не имеющие огранки. Результаты исследования продуктов синтеза с помощью растровой электронной микроскопии приведены на фиг.1 - без магнитного поля, на фиг.2 - в присутствии магнитного поля.

Пример конкретного исполнения.

Для выполнения данного эксперимента брали 3 навески нанопорошка алюминия массой по 4 г каждая, образцы помещали на подложку, выполненную из дюралюминия, придавали коническую форму и инициировали нагрев за счет выделяющегося тепла при горении нанопорошка алюминия в воздухе. Продукты синтеза удаляли с подложки. Часть образца подвергали электронно-микроскопическому анализу (фиг.1). Аналогичным образом брали также 3 навески нанопорошка алюминия по 4 г каждая, образцы помещали на подложку, выполненную из дюралюминия, придавали коническую форму. Каждый образец помещали между полюсами постоянного магнита и инициировали нагрев за счет выделяющегося тепла при горении нанопорошка алюминия в воздухе. Воздействие магнитного поля напряженностью 1500 эрстед осуществлялось в течение всего цикла «нагрев-охлаждение». Продукты синтеза также подвергали электронно-микроскопическому исследованию с помощью растрового микроскопа (фиг.2). На полученном снимке видны гексагональные кристаллы размером несколько микрон в виде плоских кристаллов и гексагональных призм, которые представляют собой монокристаллы нитрида алюминия. Продукты синтеза были также подвергнуты исследованию с помощью рентгенофазового анализа (дифрактометр ДРОН-3.0, излучение СuКспособ получения микрокристаллов нитрида алюминия, патент № 2437968 ). Согласно полученным результатам основным продуктом синтеза в обоих случаях (без магнитного поля и с магнитным полем) является гексагональный нитрид алюминия. Монокристаллы нитрида алюминия микронного размера могут быть использованы в качестве подложек для изготовления элементов наноэлектроники.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ получения микрокристаллов нитрида алюминия из смеси газа и паров алюминия, включающий размещение нанопорошка алюминия между полюсами постоянного магнита, нагрев нанопорошка, отличающийся тем, что процесс проводят в атмосфере воздуха при давлении 1 атм в условиях теплового взрыва с проведением процесса в магнитном поле постоянного магнита с напряженностью 1500 Э.


Скачать патент РФ Официальная публикация
патента РФ № 2437968

patent-2437968.pdf
Патентный поиск по классам МПК-8:

Класс C30B23/00 Выращивание монокристаллов конденсацией испаряемого или сублимируемого материала

Патенты РФ в классе C30B23/00:
способ получения алмазоподобных покрытий комбинированным лазерным воздействием -  патент 2516632 (20.05.2014)
способ получения оптических поликристаллических материалов на основе селенида цинка -  патент 2516557 (20.05.2014)
способ создания на подложках монокристаллических пленок твердого раствора висмут-сурьма -  патент 2507317 (20.02.2014)
способ получения больших однородных кристаллов карбида кремния с использованием процессов возгонки и конденсации -  патент 2495163 (10.10.2013)
композиционный оптический материал и способ его получения -  патент 2485220 (20.06.2013)
устройство для производства монокристаллического нитрида алюминия, способ производства монокристаллического нитрида алюминия и монокристаллический нитрид алюминия -  патент 2485219 (20.06.2013)
способ получения эпитаксиальных пленок твердого раствора (sic)1-x(aln)x -  патент 2482229 (20.05.2013)
способ выращивания монокристалла aln и устройство для его реализации -  патент 2468128 (27.11.2012)
способ получения монокристаллического sic -  патент 2454491 (27.06.2012)
способ получения кристаллов gan или algan -  патент 2446236 (27.03.2012)

Класс C30B29/38 нитриды

Патенты РФ в классе C30B29/38:
монокристалл нитрида, способ его изготовления и используемая в нем подложка -  патент 2485221 (20.06.2013)
устройство для производства монокристаллического нитрида алюминия, способ производства монокристаллического нитрида алюминия и монокристаллический нитрид алюминия -  патент 2485219 (20.06.2013)
способ получения поликристаллического материала на основе кубического нитрида бора, содержащего алмазы -  патент 2484888 (20.06.2013)
способ выращивания монокристаллов нитрида галлия -  патент 2477766 (20.03.2013)
способ динамического синтеза ультрадисперсного кристаллического ковалентного нитрида углерода c3n4 и устройство для его осуществления -  патент 2475449 (20.02.2013)
способ выращивания монокристалла aln и устройство для его реализации -  патент 2468128 (27.11.2012)
способ получения кристаллов gan или algan -  патент 2446236 (27.03.2012)
способ получения монокристалла нитрида тугоплавкого металла и изделия из него, получаемого этим способом -  патент 2431002 (10.10.2011)
способ выращивания слоя нитрида галлия и способ получения нитридного полупроводникового устройства -  патент 2414549 (20.03.2011)
способ получения поликристаллического кубического нитрида бора -  патент 2412111 (20.02.2011)

Класс C30B30/04 с использованием магнитных полей

Класс B82B3/00 Изготовление или обработка наноструктур

Патенты РФ в классе B82B3/00:
способ комбинированной интенсивной пластической деформации заготовок -  патент 2529604 (27.09.2014)
многослойный композиционный материал для защиты от электромагнитного излучения -  патент 2529494 (27.09.2014)
способ функционализации углеродных наноматериалов -  патент 2529217 (27.09.2014)
нанокомпонентная энергетическая добавка и жидкое углеводородное топливо -  патент 2529035 (27.09.2014)
способ получения насыщенных карбоновых кислот -  патент 2529026 (27.09.2014)
способ получения катализатора для процесса метанирования -  патент 2528988 (20.09.2014)
способ модифицирования углеродных нанотрубок -  патент 2528985 (20.09.2014)
полимерный медьсодержащий композит и способ его получения -  патент 2528981 (20.09.2014)
композиции матриксных носителей, способы и применения -  патент 2528895 (20.09.2014)
полимерное электрохромное устройство -  патент 2528841 (20.09.2014)


Наверх