способ ионно-лучевой обработки

Классы МПК:B82B3/00 Изготовление или обработка наноструктур
C23C14/48 ионное внедрение
Автор(ы):, ,
Патентообладатель(и):Российская академия наук Учреждение Российской академии наук Физико-технологический институт РАН (ФТИАН) (RU)
Приоритеты:
подача заявки:
2010-07-08
публикация патента:

Изобретение относится к микро- и наноэлектронике, к технологии изготовления наноструктур размером <30 нм при травлении через резистивную маску с высоким аспектным отношением. Способ ионно-лучевой обработки включает обработку диэлектрических материалов химически активными или инертными заряженными частицами, ускорение которых осуществляют в источнике ионов. Причем обработку диэлектрических материалов проводят пучком положительных ионов одновременно с подачей на подложку ВЧ смещения. Технический результат изобретения заключается в нейтрализации положительного заряда на всей площади диэлектрической поверхности структур, в снижении влияния заряженных частиц на параметры обрабатываемых изделий, в повышении разрешения минимальных размеров их элементов и в осуществлении травления материалов с высоким аспектным отношением. 1 ил.

Рисунок 1

Формула изобретения

Способ ионно-лучевой обработки, включающий обработку диэлектрических материалов химически активными или инертными заряженными частицами, ускорение которых осуществляют в источнике ионов, отличающийся тем, что, с целью нейтрализации положительного заряда на всей площади диэлектрической поверхности структур, снижения влияния заряженных частиц на параметры обрабатываемых изделий, повышения разрешения минимальных размеров их элементов, осуществления травления материалов с большим аспектным отношением, обработку диэлектрических материалов проводят пучком положительных ионов одновременно с подачей на подложку ВЧ смещения.

Описание изобретения к патенту

Изобретение относится к микро- и наноэлектронике, к технологии изготовления наноструктур с минимальным размером <30 нм при травлении через резистивную маску с высоким аспектным отношением, к процессам прецизионного травления в среде химически активных или инертных газов, осаждения бездефектных тонких диэлектрических пленок, очистки и полировки поверхностей обрабатываемых изделий. В процессе обработки поверхностей диэлектриков пучком ионов эти поверхности, как показано, например, в работе [1], заряжаются до положительного потенциала такой величины, при которой плотность тока ионов равна плотности тока электронов, отбираемых из пучковой плазмы. Между диэлектрической подложкой и пучковой плазмой образуется ленгмюровский слой d, величина которого определяется законом Ленгмюра

je=ji=A U3/2 /d2,

где d - расстояние от границы пучковой плазмы до поверхности подложки; je - плотность тока электронов, отбираемых с границы пучковой плазмы на подложку; ji - плотность тока пучка ионов; U - положительный потенциал на поверхности диэлектрической подложки; А - постоянная.

Величина положительного потенциала может достигать от десятков до сотен вольт в зависимости от энергии ионов, тока пучка, давления в области обрабатываемой подложки, состава рабочего вещества.

Зарядка диэлектрических пленок, нанесенных на электропроводящий слой (металл, или полупроводник), может привести к пробою диэлектрика или к появлению в нем положительного объемного заряда, существенно влияющего на параметры полупроводниковых приборов. Кроме того, зарядка диэлектрической маски вызывает искажение траекторий движения ионов при травлении функциональных слоев, особенно при высоких аспектных отношениях (глубина травления к ширине или диаметру отверстия).

Зарядка поверхностей диэлектриков (например, резистивных масок при травлении) в процессе обработки подложек немоноэнергетическими пучками (например, при использовании источников ионов с замкнутым дрейфом электронов [2, 3]) приводит, в частности, к отражению от подложек медленных ионов, если их энергия меньше энергии потенциала подложки и, как следствие, к снижению производительности процесса обработки.

Величиной положительного потенциала на диэлектрической подложке можно управлять, создавая поток электронов из специально организованного источника электронов, например термоэлектронного накаливаемого катода, полого катода, плазменного разряда. Недостатком этих методов токовой нейтрализации пучка ионов является отсутствие нейтрализации положительного поверхностного заряда в каждой точке диэлектрической поверхности даже при равенстве токов ионов и электронов на подложке. Это приводит к необходимости механического перемещения подложки относительно пучка ионов, как, например, в установке «Каштан» [4], что не всегда выполнимо, в частности, для кластерного оборудования. Кроме того, использование дополнительных источников электронов не всегда приемлемо при работе с химически активными газами при реактивном ионно-лучевом травлении.

Целью данного изобретения является достижение технического результата, заключающегося в нейтрализации положительного заряда на всей площади диэлектрической поверхности структур, в снижении влияния заряженных частиц на параметры обрабатываемых изделий, в повышении разрешения минимальных размеров их элементов и в осуществлении травления материалов с высоким аспектным отношением.

Поставленная задача решается в способе, включающем обработку диэлектрической поверхности подложки пучком положительных ионов химически активных или инертных веществ при одновременной подаче на подложку ВЧ потенциала, генерирующего электроны, нейтрализующие образуемый пучком ионов положительный заряд на всей площади диэлектрической поверхности подложки.

Один из примеров осуществления способа ионно-лучевой обработки приведен на чертеже. Технологическая вакуумная камера 1 откачивается до давления 5·10-4 Па турбомолекулярным насосом ТМН-1500 (на чертеже показан только фланец 5 для присоединения агрегата откачного) с эффективной быстротой откачки способ ионно-лучевой обработки, патент № 2433081 700 л/с в диапазоне давлений (10-2÷1.3·10 -4) Па, затем через регулятор расхода газа 7 осуществляется напуск рабочего газа или смеси газов (химически активных или инертных) в источник ионов 6, а через регулятор расхода газа 8 - в область подложки 4 (в зависимости от проводимого технологического процесса), и устанавливается рабочее давление ~10-2 Па.

При включении электропитания в источнике ионов 6 происходит зажигание разряда и формирование направленного пучка ионов 9 рабочего вещества, распространяющегося в технологической камере до стола 2, на котором закреплены обрабатываемые подложки 4. Одновременно с этим на поверхность подложек через ВЧ ввод 3 подается ВЧ смещение величиной от 20 до 100 Вт.

Эксперименты по практическому выполнению изобретения проводились на установке ионно-лучевой обработки «Каштан» [4].

Авторами экспериментально установлено, что при одновременном травлении с помощью пучка ионов и ВЧ разряда в среде CF4 таких, например, материалов, как Nb, W, удается существенно (более чем в 4 раза) снизить рабочее давление в технологической камере. Установлено также, что при давлении 6.5·10-2 Па минимальный разрядный ток поддерживался при напряжении 600 В, что позволяет проводить травление пленочных материалов низкоэнергетичным пучком ионов.

Для формирования наноструктур с минимальными размерами элементов (до 20 нм) для автоэмиссионных приборов проведены процессы прецизионного травления Ti пучком ионов элегаза одновременно с ВЧ смещением на подложке через маску нанопористого анодного оксида алюминия толщиной до 1 мкм и диаметром отверстий (20÷30) нм (аспектное отношение структуры маски ~50:1).

По сравнению с известными техническими решениями предлагаемый способ ионно-лучевой обработки позволяет:

- управлять зарядом на поверхности подложки и, например, при травлении через резистивную маску устранить пробои в ней и искажения траекторий ионов;

- существенно снизить влияние заряженных частиц на параметры обрабатываемых структур за счет того, что обработка их пучком ионов проводится одновременно с подачей на подложку ВЧ потенциала, генерирующего электроны, нейтрализующие положительный заряд на поверхности подложки, образуемый пучком ионов;

- примерно в 4 раза снизить рабочее давление в области подложек, вследствие чего возрастает анизотропия травления и разрешение минимальных размеров элементов;

- формировать наноструктуры с минимальными размерами элементов (до 20 нм), например, для автоэмиссионных приборов;

- осуществлять процессы прецизионного травления наноструктур через маску толщиной до 1 мкм и диаметром отверстий (20÷30) нм (аспектное отношение структуры маски ~50:1);

- обеспечить более равномерную обработку (например, травление) всей поверхности подложек;

- независимо изменять состав рабочего вещества в области подложек и в пучке ионов и осуществлять в едином вакуумном цикле процессы травления, например, сплава Аl-Сu (ВЧ плазмохимическим методом травится Аl (летучие соединения АlCl), но не травится Cu (нет летучих соединений), а пучком ионов Ar травится Cu).

Литература

1. Валиев К.А., Великов Л.В., Маишев Ю.П. Прецизионное селективное травление пленок SiO2 и Si3 N4 пучками ионов химически активных газов. Труды ФТИАН, том 15. «Ионно-лучевая обработка материалов в микро- и наноэлектронике». М., Наука-Физматлит, 1999. С.3-17.

2. Maishev Y., Ritter J., Terentiev Y., Velikov L. "Cold-cathode ion source with propagation of ions in the electron drift plane". Patent No.6130507, Date of Patent: October 10, 2000.

3. Маишев Ю.П. Источники ионов для реактивного ионно-лучевого травления и нанесения пленок // Электронная промышленность. 1990. № 5. С.15-18.

4. Маишев Ю.П. Источники ионов и ионно-лучевое оборудование для нанесения и травления материалов // Вакуумная техника и технология. 1992. Т. 2. № 4. С.53-58.

Класс B82B3/00 Изготовление или обработка наноструктур

способ комбинированной интенсивной пластической деформации заготовок -  патент 2529604 (27.09.2014)
многослойный композиционный материал для защиты от электромагнитного излучения -  патент 2529494 (27.09.2014)
способ функционализации углеродных наноматериалов -  патент 2529217 (27.09.2014)
нанокомпонентная энергетическая добавка и жидкое углеводородное топливо -  патент 2529035 (27.09.2014)
способ получения насыщенных карбоновых кислот -  патент 2529026 (27.09.2014)
способ получения катализатора для процесса метанирования -  патент 2528988 (20.09.2014)
способ модифицирования углеродных нанотрубок -  патент 2528985 (20.09.2014)
полимерный медьсодержащий композит и способ его получения -  патент 2528981 (20.09.2014)
композиции матриксных носителей, способы и применения -  патент 2528895 (20.09.2014)
полимерное электрохромное устройство -  патент 2528841 (20.09.2014)

Класс C23C14/48 ионное внедрение

способ ионной имплантации поверхностей деталей из конструкционной стали -  патент 2529337 (27.09.2014)
способ импульсно-периодической ионной очистки поверхности изделий из диэлектрического материала или проводящего материала с диэлектрическими включениями -  патент 2526654 (27.08.2014)
конвертер вакуумного ультрафиолетового излучения в излучение видимого диапазона в виде аморфной пленки оксида кремния siox на кремниевой подложке -  патент 2526344 (20.08.2014)
устройство для химико-термической обработки деталей в несамостоятельном тлеющем разряде -  патент 2518047 (10.06.2014)
способ изготовления газодинамического подшипника поплавкового гироскопа -  патент 2517650 (27.05.2014)
способ имплантации ионами газов металлов и сплавов -  патент 2509174 (10.03.2014)
способ получения люминофора в виде аморфной пленки диоксида кремния с ионами селена на кремниевой подложке -  патент 2504600 (20.01.2014)
катод установки для ионной имплантации -  патент 2501886 (20.12.2013)
способ нанесения на металлическую деталь комплексного покрытия для защиты детали от водородной коррозии, состоящего из множества микрослоев -  патент 2495154 (10.10.2013)
способ многослойного нанесения покрытий на подложку -  патент 2492276 (10.09.2013)
Наверх