биологический материал для протезов

Классы МПК:A61L27/38 животные клетки
A61F2/24 сердечные клапаны
Автор(ы):, , , ,
Патентообладатель(и):Учреждение Российской академии медицинских наук Научный центр сердечно-сосудистой хирургии им. А.Н. Бакулева РАМН (RU)
Приоритеты:
подача заявки:
2009-09-29
публикация патента:

Изобретение относится к медицине, а именно к сердечно-сосудистой хирургии. Технический результат - уменьшение кальцификации при сохранении физико-механических характеристик достигается тем, что биологический материал для сердечно-сосудистой хирургии выполнен из консервированного плавательного пузыря карпа. 1 табл.

Изобретение относится к медицине, а именно к сердечно-сосудистой хирургии.

Известно использование в качестве биологического пластического материала в сердечно-сосудистой хирургии (Л.А.Бокерия, И.И.Каграманов, И.В.Кокшенев «Новые биологические материалы и методы лечения в кардиохирургии». М., Изд-во НЦССХ им. А.Н.Бакулева РАМН, 2001 г.), в котором в качестве основы используют перикард теленка и глиссоновую капсулу печени крупного рогатого скота, которые отмывают в растворе с гепарином (25000 Ед/400 мл), выравнивают поверхность и консервируют 0,625% раствором глутарового альдегида, затем обрабатывают 1% раствором додецилсульфата натрия и фиксируют в 0,625% растворе глутарового альдегида, получая биологический материал, обладающий нейтральными иммунными свойствами при достаточно высоких физико-механических характеристиках.

Эти материалы имеют склонность к ранней кальцификации, фиброзу, дегенеративным изменениям в организме пациента. При имплантации в организм пациента перикард подвергается механическому истиранию за счет потока крови, а также образованию кристаллов гидроксиапатита на поверхности, что приводит к разрушению самой ткани.

Техническим результатом применения биологического материала в сердечно-сосудистой хирургии является уменьшение кальцификации при сохранении их физико-механических характеристик.

В качестве биологического материала в сердечно-сосудистой хирургии предлагается применение плавательного пузыря карпа.

Плавательный пузырь забирают у свежевыловленного карпа. Тупым и острым путем производят выделение пузыря. Препарат помещают в стандартный физиологический раствор с гепарином (25000 Ед/400 мл) и в течение 40 минут производят отмывание пузыря от крови, белковых, жировых включений. Далее препарат помещают между двух стекол для выравнивания поверхности под небольшим давлением в 0,625% раствор глутарового альдегида на 24 часа, затем производят консервирование полученных пластин по стандартной методике полностью погруженными в 0,625% раствор глутарового альдегида в свободном состоянии в течение 6 суток. Затем пластины вынимают из раствора глутарового альдегида и помещают их в 1% раствор додецилсульфата натрия на 1 сутки. Затем окончательно фиксируют пластины биологического материала из плавательного пузыря в течение 7 суток при комнатной температуре в 0,625% растворе глутарового альдегида. Препарат готов к применению.

Этот биологический материал может широко применяться в медицине, а именно в сердечно-сосудистой хирургии. Биологический материал из плавательного пузыря имеет меньшую подверженность кальцификации, что подтверждается результатами экспериментальных исследований.

Пример 1

Карп зеркальный выловлен. Сразу после отлова выделен плавательный пузырь, который был отмыт в физиологическом растворе с гепарином и помещен в расправленном виде между двух стекол на 24 часа в 0,625% раствор глутарового альдегида. Затем пластины биологической ткани помещены в аналогичной концентрации раствор глутарового альдегида на 6 суток. После предварительной фиксации пластины помещены в 1% раствор додецилсульфата натрия для антикальциевой обработки на 1 сутки, после чего вновь помещены в свежий 0,625% раствор глутарового альдегида на 7 суток. Готовые пластины вынуты из раствора и после их обмывания стерильным физиологическим раствором использованы для дальнейших исследований.

Изучение физико-механических свойств включало в себя: определение толщины (h), предела прочности (биологический материал для протезов, патент № 2430746 ), относительного удлинения (L), запаса деформативной способности (биологический материал для протезов, патент № 2430746 ), модуля упругости (Е) перикарда теленка и плавательного пузыря карпа.

Толщину образцов измеряли с помощью толщиномера TP-10-60.

Исследования проводили на разрывной машине «Instron» (Англия) с регулируемым усилением закрепления в пневмозажимах, которое выбиралось экспериментально. Скорость при испытаниях составляла 20 мм/мин, а предельное значение нагрузки F - 50 кг. Исследования проводились в двух направлениях - продольном и поперечном в зависимости от хода волокон. Высекалось по 60 образцов из каждого вида биоматериала в виде двухсторонних лопаток. Испытания проводились в соответствии с ГОСТами 9550-81 и 11262-80. Скорость раздвижения зажимов машины - 2 см/мин.

Предел прочности определяли по формуле: биологический материал для протезов, патент № 2430746 =F/S, где F - максимальная сила растяжения при нарушении сплошности материала, S - площадь поперечного сечения образца.

Относительное удлинение тканей расчитывали по формуле:

L=(L2-L1)/L1×100%, где L - относительное удлинение тканей, L1 - начальная длина образца, L2 - длина образца при нагрузке в момент начала разрыва.

Запас деформативной способности биологический материал для протезов, патент № 2430746 определяли по формуле: биологический материал для протезов, патент № 2430746 =L2/L1, где L1 - начальная длина образца, L2 - длина образца при нагрузке в момент разрыва.

Модуль упругости определяли по формуле (в МПа):

E=(F2-F1)L 1/S(L2-L1).

Как показал опыт, длительная и полноценная функция материала в организме больного зависит от способности данной ткани противостоять разрушающему действию физической нагрузки. Были проведены исследования упругопрочностных характеристик описываемых биологических тканей.

При проведении упругопрочностных испытаний материал плавательного пузыря рассматривался как однородный, изотропный. Средняя толщина образцов (h), обработанных глутаровым альдегидом и додецилсульфатом натрия, составила 0,32-0,51 мм, предел прочности (биологический материал для протезов, патент № 2430746 ) в среднем - 9,02-12,33 МПа, модуль упругости (Е) - 48,07-31,2 МПа, запас деформативной способности (биологический материал для протезов, патент № 2430746 ) - 1,45. Для сравнения изучили упругопрочностные свойства перикарда теленка, обработанного глутаровым альдегидом (30 опытов), по данным литературы (Касьянов В.А. Современные проблемы биомеханики. - М., 1983. Выпуск 1, с.48-50), сравнили с механическими характеристиками лепестков аортального клапана человека (Тетере Г.И. Обоснование метода выбора метода обработки и формирования биопротезов клапана сердца. - Рига, 1990, дисс. на соискание степени канд. мед. наук) и глиссоновой капсулы, обработанной глутаровым альдегидом (20 опытов). Результаты испытаний приведены в таблице.

Упругопрочностные характеристики перикарда теленка, глиссоновой капсулы печени и аортального клапана человека

Ткань Модуль прочности, МПа Модуль упругости, Мпа Запас деформативной способности
Перикард теленка ось* - 14,85±1,52 ось - 27,42±3,52 ось - 1,50±0,01
рад.** - 9,10±0,96 рад. - 13,02±1,56 рад. - 1,51±0,01
Глиссоновая капсула печени 10,66±0,98 61,85±4,72 1,35±0,02
Створки аллоаортального клапана ось - 4,05ось - 28,80ось - 1,16
рад. - 0,71 рад. - 2,88 рад. - 1,41
* Поперечное направление нагрузки, ** продольное направление нагрузки.

Результаты исследования показали, что запас деформативной способности плавательного пузыря карпа меньше, чем у перикарда теленка (в среднем на 11%), а модуль упругости выше (в среднем на 26%). В то же время плавательный пузырь по толщине примерно равен толщине перикарда теленка.

Исследования показали, что упругопрочностные свойства плавательного пузыря значительно выше, чем те же свойства аортальных створок человека. Эти данные указывают, что при длительном существовании в организме человека предлагаемого материала он успешно может противостоять физической нагрузке.

Исследование кальцификации проводили методом абсорбционной атомной спектроскопии после 2-месячной имплантации образцов перикарда теленка и плавательного пузыря карпа крысам под кожу с нагрузкой витамином D (стандартная методика). Результаты испытаний: содержание кальция в перикарде теленка - 3,3±0,2 мг/г веса сухой ткани, содержание кальция в плавательном пузыре - 0,8±0,2 мг/г веса сухой ткани.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Биологический материал для сердечно-сосудистой хирургии, отличающийся тем, что выполнен из консервированного плавательного пузыря карпа.


Скачать патент РФ Официальная публикация
патента РФ № 2430746

patent-2430746.pdf
Патентный поиск по классам МПК-8:

Класс A61L27/38 животные клетки

Патенты РФ в классе A61L27/38:
биологический материал, подходящий для терапии остеоартроза, повреждения связок и для лечения патологических состояний суставов -  патент 2529803 (27.09.2014)
способ создания зуба -  патент 2523559 (20.07.2014)
многослойные сосудистые трубочки -  патент 2522966 (20.07.2014)
биологический имплант переносицы и способ его изготовления -  патент 2499612 (27.11.2013)
биоимплантат с многофункциональным биоактивным наноструктурированным покрытием -  патент 2482882 (27.05.2013)
способ получения биоинженерной конструкции для замещения костных дефектов -  патент 2482881 (27.05.2013)
применение стромальных стволовых клеток жировой ткани для лечения свищей -  патент 2435846 (10.12.2011)
способ получения композиционных рассасывающихся матриц на основе хитозана и коллагена для выращивания клеток кожи человека -  патент 2431504 (20.10.2011)
биологический материал для протезов -  патент 2418607 (20.05.2011)
биотрансплантат, способ его получения и способ лечения заболеваний пародонта -  патент 2418571 (20.05.2011)

Класс A61F2/24 сердечные клапаны

Патенты РФ в классе A61F2/24:
автоматическое создание ориентиров для замены сердечного клапана -  патент 2526567 (27.08.2014)
протез клапана сердца -  патент 2525731 (20.08.2014)
биологический перикардиальный протез клапана сердца с хитозановым покрытием и способ его получения -  патент 2519219 (10.06.2014)
способ изготовления каркасов искусственных клапанов сердца из технически чистого титана -  патент 2514765 (10.05.2014)
интракардиальное устройство для восстановления функциональной упругости кардиоструктур, инструмент для удерживания интракардиального устройства, а также способ имплантирования интракардиального устройства в сердце -  патент 2514117 (27.04.2014)
гибкий протез атриовентрикулярного клапана сердца -  патент 2508918 (10.03.2014)
способ повышения биосовместимости трансплантатов клапанов сердца и сосудов -  патент 2499611 (27.11.2013)
устройство упрочнения внутристеночного аортального клапана и упрочненный биологический аортальный клапан -  патент 2495647 (20.10.2013)
устройство и способ для уменьшения размера клапана сердца -  патент 2491035 (27.08.2013)
клапаносодержащий протез корня аорты -  патент 2479288 (20.04.2013)


Наверх