наноструктурированное поляризованное стекло и способ его получения

Классы МПК:C03C3/097 содержащие фосфор, ниобий или тантал
B82B3/00 Изготовление или обработка наноструктур
Автор(ы):, , ,
Патентообладатель(и):Государственное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет им. Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) (RU)
Приоритеты:
подача заявки:
2009-12-29
публикация патента:

Изобретение относится к области оптического материаловедения, в частности к наноструктурированному поляризованному стеклу и способу его получения. Изобретение позволяет создавать стекло с квадратичной оптической восприимчивостью, повышенной до 9,0±0,5 пм/В, которое может быть использовано в качестве активного материала линейных электрооптических преобразователей. Наноструктурированное поляризованное стекло имеет следующее соотношение компонентов, мол.%: Na2O 22-25, Nb2O5 25-30, SiO2 остальное. Способ получения стекла включает двухступенчатую термообработку и последующую поляризацию в постоянном электрическом поле при повышенной температуре. Термообработку проводят при температуре 640-645°С в течение 11-12 ч и затем при температуре 670-675°С в течение 15-20 мин. Затем термообработанный образец в виде плоскопараллельной пластины толщиной 0,9-1,1 мм подвергают поляризации при температуре 320-330°С в постоянном электрическом поле, направленном перпендикулярно пластине под напряжением 0,8-1,5 кВ в течение 10-15 мин, с последующим охлаждением в присутствии того же электрического поля. 2 н.п. ф-лы.

Формула изобретения

1. Наноструктурированное поляризованное стекло, включающее щелочной оксид, оксид ниобия и стеклообразующий оксид, отличающееся тем, что в качестве щелочного оксида используется Na2 O, в качестве стеклообразующего оксида - SiO2, при следующем соотношении компонентов, мол.%:

22-25Na2 O
25-30 Nb2O5
остальное SiO2

2. Способ получения наноструктурированного поляризованного стекла, включающий двухступенчатую термообработку и последующую поляризацию в постоянном электрическом поле при повышенной температуре, отличающийся тем, что термообработку проводят при температуре 640-645°С в течение 11-12 ч и затем при температуре 670-675°С в течение 15-20 мин, а затем термообработанный образец в виде плоскопараллельной пластины толщиной 0,9-1,1 мм подвергают поляризации при температуре 320-330°С в постоянном электрическом поле, направленном перпендикулярно пластине под напряжением 0,8-1,5 кВ в течение 10-15 мин с последующим охлаждением в присутствии того же электрического поля.

Описание изобретения к патенту

Изобретение относится к области оптического материаловедения, в частности к наноструктурированному поляризованному стеклу и способу его получения. Это стекло может быть использовано в качестве активного материала линейных электрооптических преобразователей в диапазоне 400-1100 нм.

Известен способ формирования долгоживущей квадратичной оптической восприимчивости в стеклах с помощью их поляризации в электрическом поле при повышенной температуре с последующим охлаждением под полем, что позволяет «заморозить» наведенное в объеме стекла внутреннее электрическое поле и вызванную им анизотропию свойств. Изначально этот способ был разработан для кварцевого стекла [United States Patent 5239407 "Method and apparatus for creating large second-order nonlinearities in fused silica"].

Также известен способ получения наноструктурированных стекол, в которых возможна генерация второй оптической гармоники за счет формирования в их объеме наноразмерных кристаллов путем термообработки по соответствующему режиму, предложенный для стекла состава 25K 2О-25Nb2О5-50SiО2, термообработанного при температуре 695°С в течение 24 часов и показавшего величину генерации второй гармоники в 1,3 от порошкового эталона б-кварца [Sigaev V.N., Stefanovich S.Yu., Champagnon В., Gregora I., Pernice P., Aronne A., LeParc R., Sarkisov P.D., Dewhurst C. Amorphous nanostructuring in potassium niobium silicate glasses by SANS and SHG: a new mechanism for second-order optical non-linearity // J. Non-Cryst. Solids, - 2002. - V. 306. - P. 238-248]. Недостатком этого стекла является низкая величина квадратичной нелинейности в связи с хаотической ориентацией сформированных нанокристаллов.

Известен патент на группу стекол щелочно-алюмоборосиликатной системы с рядом добавок, пригодных для формирования квадратичной оптической восприимчивости путем поляризации при повышенной температуре [United States Patent 7285510 "Glass composition for poling and glass functional product containing the same"].

В работе [M.Dussauze, E.Fargin, M.Lahaye, V.Rodriguez, F.Adamietz. Large second-harmonic generation of thermally poled sodium borophosphate glasses. Opt. Express, 2005, v.l3, p.4064-4069], в однородном стекле состава Na10P8,5B1,5Nb 15О65 с помощью поляризации при повышенной температуре была создана квадратичная оптическая восприимчивость 5 пм/В в слое толщиной 5 мкм, что на сегодня является максимальным значением квадратичной оптической восприимчивости, полученным в оксидных стеклах с помощью поляризации при повышенной температуре. Недостатком этого стекла является низкая термостабильность квадратичной нелинейности, обусловленная существенным увеличением подвижности катионов Na +, с ростом температуры. Учитывая, что согласно [М.Dussauze, E.Fargin, M.Lahaye, V.Rodriguez, F.Adamietz. Large second-harmonic generation of thermally poled sodium borophosphate glasses. Opt. Express, 2005, v.l3, p.4064-4069] квадратичная нелинейность в стекле возникает за счет стабилизации возникших под действием электрического поля структурных изменений в стекле при его охлаждении, то при повторном нагреве до температур, сопоставимых с поляризацией (200-300°С), квадратичная нелинейность быстро упадет до нуля.

Наиболее близким к данному изобретению являются поляризованное наноструктурированное стекло и способ его получения, описанные в работе Комацу и др. [Tamagawa N., Benino Y., Fujiwara Т., Komatsu Т. Thermal poling of transparent TeО2-based nanocrystallized glasses and enhanced second harmonic generation // Opt. Comm. - 2003. - V. 217. - P. 387-394], где впервые тепловая поляризация была применена к стеклам, в которых путем термообработок уже создана нанокристаллическая структура. При этом поляризовались и однородные образцы, так и наноструктурированные, содержащие нанокристаллы неиденифицированной искаженной кубической фазы. В указанной работе исследовалось стекло системы 12К2 О·15Nb2O5·68ТеO2·2МоО 3. Данное стекло подвергалось двухступенчатой термообработке по режиму 375°С - 5 часов +415°С - 2 часа. Поляризующее напряжение составляло 2,0 кВ, температура поляризации - 240°С, длительность - 40 мин. Было показано, что сигнал генерации второй гармоники несколько увеличивается как относительно сигнала поляризованного однородного стекла данного состава, так и относительно неполяризованного наноструктурированного стекла. При этом значения квадратичной оптической нелинейности были невелики, оценивались в сравнении с кристаллическим кварцем и, по всей видимости, не превышали 0,4 пм/В. Термостабильность полученной нелинейности не оценивалась.

Основным недостатком прототипа является низкая квадратичная оптическая восприимчивость, которая существенно оказывается меньше, чем у известных нелинейно-оптических кристаллов (например, LiNbO 3, KNbO3). В связи с указанными недостатками данное стекло не использовалось в технологических приложениях, несмотря на гораздо меньшую себестоимость стекла по сравнению с нелинейно-оптическими кристаллами.

Задачей предлагаемого изобретения является создание стекла с повышенными квадратичной оптической восприимчивостью и термостабильностью.

Поставленная задача решается наноструктурированным поляризованным стеклом, включающим щелочной оксид, оксид ниобия и стеклообразующий оксид, причем в качестве щелочного оксида используется Na 2O, в качестве стеклообразующего оксида SiO2 при следующем соотношении компонентов, мол.%:

Na2O22-25
Nb2 O525-30
SiO2 остальное

Поставленная задача также решается способом получения наноструктурированного поляризованного стекла, включающего двухступенчатую термообработку и последующую поляризацию в постоянном электрическом поле при повышенной температуре, причем термообработку проводят при температуре 640-645°С в течение 11-12 ч и затем при температуре 670-675°С в течение 15-20 мин, далее полученный термообработанный образец в виде плоскопараллельной пластины толщиной 0,9-1,1 мм подвергают поляризации при температуре 320-330°С в постоянном электрическом поле, направленном перпендикулярно пластине под напряжением 0,8-1,5 кВ в течение 10-15 мин, с последующим охлаждением в присутствии того же электрического поля.

Ряд ниобийсодержащих стекол был подвергнут термообработкам для формирования нанокристаллической структуры и последующей поляризации при повышенной температуре.

Стекла в системе Na2O-Nb2O 5-SiO2 были получены варкой шихты, состоящей из химически чистых Nа2СО3, Nb2 O5 и SiO2, в течение 30 мин при температурах 1300-1400°С, после чего расплав закаливался прессованием между стальными плитами в виде плоскопараллельных пластин, которые далее шлифовались до толщины 0,9-1,1 мм и полировались. Изучались составы с содержанием оксидов натрия и ниобия, близким к единице. В таких составах на начальных стадиях кристаллизации, которые еще не вызывают заметного ухудшения прозрачности, может быть выделена в качестве единственной кристаллической фазы антисегнетоэлектрическая фаза NaNbO3, способная проявлять сегнетоэлектрические свойства при некотором искажении структуры [Borelli N.F. Electro-optic effect in transparent niobate glass-ceramic systems // J.Appl. Phys. - 1967. - V.38. - N.11. - P.4243-4247], что может быть реализовано в стеклах.

Составы с содержанием SiO 2 менее 45 мол.% имели повышенную склонность к кристаллизации и низкую механическую прочность за счет быстрой закалки, что не позволяло изготовить качественные поляризованные образцы. Составы с повышенным содержанием SiO2 (>53 мол.%) оказались менее перспективны для формирования квадратичной оптической восприимчивости за счет уменьшения содержания остальных компонент и прежде всего высокополяризуемых полиэдров ниобия.

Для поляризации были подготовлены образцы однородных стекол и стекол, предварительно термообработанных по одноступенчатому (либо только в зоне зародышеобразования кристаллов при 640-645°С, либо только на нижней границе зоны роста кристаллов в начале первого экзотермического пика на кривой ДТА при 670-675°С) или по двухступенчатому режиму (в обеих указанных температурных зонах). Длительность термообработки на первой ступени варьировалась от 3 до 24 часов, на второй ступени - от 10 мин до 1 часа. Рентгенофазовый анализ показывает наличие в большинстве образцов зародышей кристаллов (1-2 слабых пика на дифракционной кривой) после термообработки на первой ступени и наличие кристаллической фазы NaNbO3 после термообработки на второй.

Поляризация проводилась в специальной установке между электродами из полированной стали или латуни. Однородные образцы обладали более высокой проводимостью по сравнению с термообработанными и характеризовались более низкой температурой пробоя при одинаковом напряжении на электродах.

Квадратичная оптическая восприимчивость рассчитывалась из измеренных кривых Мейкера - зависимостей интенсивности второй гармоники от угла падения лазерного пучка (Нd3+:YАG-лазер, длина волны 1064 нм).

Пример 1

Стекло состава 25 мол.% Na2O, 30 мол.% Nb2 O5, 45 мол.% SiO2 было подвергнуто двухступенчатой термообработке при температуре 640°С в течение 12 ч и затем при температуре 675°С в течение 20 мин, после чего термообработанный образец в виде плоскопараллельной пластины толщиной 0,95 мм был подвергнут поляризации на воздухе при температуре 330°С в постоянном электрическом поле, направленном перпендикулярно пластине, в течение 15 мин. Электрическое поле в образце было с помощью стальных электродов, плотно приложенных с двух сторон к образцу, на которые подавалось постоянное напряжение 1,5 кВ. После этого образец был охлажден со скоростью 20°С/мин в присутствии того же электрического поля. Напряжение было отключено при температуре 50°С.

Анализ генерации второй гармоники показал, что в образце возникла квадратичная оптическая восприимчивость величиной 9,0±0,5 пм/В в приповерхностном слое толщиной около 5 мкм со стороны анода. При этом прозрачность образца относительно исходного однородного стекла уменьшилась не более чем на 5% в диапазоне 400-1100 нм. Термостабильность образца проверялась термообработкой в течение 24 часов при температуре 250°С. За это время квадратичная оптическая восприимчивость не изменилась. Через 10 месяцев нахождения при комнатной температуре квадратичная оптическая восприимчивость также осталась стабильной.

Пример 2

Стекло состава 22 мол.% Na 2O, 25 мол.% Nb2O5, 53 мол.% SiO 2 было подвергнуто двухступенчатой термообработке при температуре 640°С в течение 12 ч и затем при температуре 675°С в течение 15 мин, после чего термообработанный образец в виде плоскопараллельной пластины толщиной 1,0 мм был подвергнут поляризации на воздухе при температуре 320°С под постоянным напряжением 1,3 кВ в течение 15 мин с помощью стальных электродов, после чего образец был охлажден со скоростью 20°С/мин под тем же напряжением. Анализ генерации второй гармоники показал, что в образце возникла квадратичная оптическая восприимчивость величиной 4,2±0,4 пм/В в приповерхностном слое толщиной около 5 мкм со стороны анода. Термостабильность образца проверялась термообработкой в течение 24 часов при температуре 300°С. За это время квадратичная оптическая восприимчивость уменьшилась на 10%. Последующая термообработка в течение 24 часов при температуре 250°С не изменила величину квадратичной оптической восприимчивости.

Пример 3

Стекло состава 25 мол.% Na2O, 25 мол.% Nb2O5, 50 мол.% SiO2 было подвергнуто двухступенчатой термообработке при температуре 645°С в течение 12 ч и затем при температуре 670°С в течение 10 мин, после чего термообработанный образец в виде плоскопараллельной пластины толщиной 0,9 мм был подвергнут поляризации на воздухе при температуре 325°С под постоянным напряжением 1,2 кВ в течение 10 мин с помощью стальных электродов, после чего образец был охлажден со скоростью 20°С/мин под тем же напряжением. Анализ генерации второй гармоники показал, что в образце возникла квадратичная оптическая восприимчивость величиной 2,8±0,3 пм/В в приповерхностном слое толщиной около 4 мкм со стороны анода. Оптическое пропускание образца уменьшилось относительно исходного однородного стекла не более чем на 2% в диапазоне 400-1100 нм.

Пример 4

Стекло состава 25 мол.% Na2O, 30 мол.% Nb2O5, 45 мол.% SiO2 было подвергнуто двухступенчатой термообработке при температуре 645°С в течение 11 ч и затем при температуре 675°С в течение 10 мин, после чего термообработанный образец в виде плоскопараллельной пластины толщиной 1,1 мм был подвергнут поляризации на воздухе при температуре 325°С под постоянным напряжением 1,0 кВ в течение 15 мин с помощью стальных электродов, после чего образец был охлажден со скоростью 20°С/мин под тем же напряжением. Анализ генерации второй гармоники показал, что в образце возникла квадратичная оптическая восприимчивость величиной 0,6±0,1 пм/В в приповерхностном слое толщиной около 5 мкм со стороны анода.

Пример 5

Стекло состава 25 мол.% Na2O, 30 мол.% Nb2 O5, 45 мол.% SiO2 было подвергнуто двухступенчатой термообработке при температуре 645°С в течение 11 ч и затем при температуре 675°С в течение 10 мин, после чего термообработанный образец в виде плоскопараллельной пластины толщиной 1,1 мм был подвергнут поляризации на воздухе при температуре 325°С под постоянным напряжением 0,8 кВ в течение 15 мин с помощью стальных электродов, после чего образец был охлажден со скоростью 20°С/мин под тем же напряжением. Анализ генерации второй гармоники показал, что в образце возникла квадратичная оптическая восприимчивость величиной 0,12±0,03 пм/В в приповерхностном слое толщиной около 4 мкм со стороны анода.

Показано, что наибольшей квадратичной оптической нелинейностью обладают стекла, термообработанные по двухступенчатой схеме, на порядок и более превосходя нелинейность однородных поляризованных стекол того же состава. При этом увеличение времени термообработки на первой ступени до 12 часов влекло за собой увеличение сигнала второй гармоники, при дальнейшем продлении термообработки нелинейность оставалась практически одинаковой. Увеличение времени термообработки на второй ступени вело к увеличению квадратичной нелинейности образца, однако сопровождалось быстрой потерей прозрачности за счет увеличения кристаллов в объеме стекла до размеров, близких к длине световой волны, поэтому оптимальное время термообработки на второй ступени составило 20 минут, что соответствовало уменьшению прозрачности образца примерно на 3%.

Наиболее высокое значение квадратичной оптической восприимчивости, полученное авторами в результате поляризации наноструктурированных стекол, составляет 9,0±0,5 пм/В в приповерхностном слое образца толщиной 4-5 мкм. Соответствующий выбор поляризующего напряжения при неизменных прочих параметрах режима позволяет регулировать наведенную анизотропию, получая образцы с требуемой квадратичной оптической восприимчивостью в пределах от 0 до 9 пм/В.

При комнатной температуре квадратичная нелинейность наноструктурированных поляризованных образцов оставалась постоянной в течение не менее 10 месяцев. Термостабильность образцов проверялась термообработкой в течение 24 часов при температурах 250°С и 300°С. В первом случае квадратичная оптическая восприимчивость оставалась постоянной в пределах ошибки измерения, во втором - уменьшилась на 10%.

Таким образом, заявляемое наноструктурированное поляризованное стекло в 1,8 раза превосходит максимальную квадратичную оптическую нелинейность, полученную в поляризованных оксидных стеклах, как однородных, так и наноструктурированных, а также обладает принципиально более высокой термостабильностью по сравнению с однородными поляризованными стеклами. Оно обладает хорошей прозрачностью в области 400-100 нм и может быть использовано в оптоэлектронных устройствах оптического и ближнего ИК-диапазонов.

Класс C03C3/097 содержащие фосфор, ниобий или тантал

стекло -  патент 2334701 (27.09.2008)
стекло -  патент 2334700 (27.09.2008)
стекло -  патент 2329960 (27.07.2008)
стекло -  патент 2326068 (10.06.2008)
глушеное стекло -  патент 2321561 (10.04.2008)
стекло -  патент 2317266 (20.02.2008)
стекло -  патент 2309908 (10.11.2007)
стекло для изготовления градиентных элементов методом ионного обмена -  патент 2146233 (10.03.2000)
бессвинцовое и безбариевое хрустальное стекло с высоким светопропусканием -  патент 2102345 (20.01.1998)
стекло -  патент 2056379 (20.03.1996)

Класс B82B3/00 Изготовление или обработка наноструктур

Наверх