синхронная реактивная машина

Классы МПК:H02K19/10 многофазные 
H02K19/24 с безобмоточным ротором из мягкого железа с переменным магнитным сопротивлением 
H02K29/03 с магнитными цепями, специально предназначенными для исключения закручивающих пульсаций или самовозбуждения
Автор(ы):, , , , , ,
Патентообладатель(и):Государственное образовательное учреждение высшего профессионального образования "Южно-Уральский государственный университет" (ГОУ ВПО "ЮУрГУ") (RU)
Приоритеты:
подача заявки:
2009-12-17
публикация патента:

Изобретение относится к области электротехники и может быть использовано, например, в регулируемых электроприводах общепромышленных механизмов, а также в транспортных средствах, а именно в источниках питания бортовой сети автомобилей, тракторов, вездеходов и т.д. Технический результат, достигаемый при использовании данного изобретения, состоит в снижении нагрева ротора синхронной реактивной машины за счет снижения магнитных потерь, вызванных пульсациями МДС возбуждения. В предлагаемой синхронной реактивной машине, содержащей на статоре многофазную силовую обмотку, равномерно распределенную вдоль внутренней расточки статора и предназначенную для подключения к вентильному преобразователю, а также многофазную обмотку возбуждения с полным шагом, предназначенную для подключения к управляемым возбудителям, согласно изобретению по краям каждого из полюсов ротора выполнено рифление в виде канавок с шагом h=8-10 мм, и основания которых расположены в плоскостях, параллельных оси вращения ротора, при этом ширина каждой канавки а=2-4 мм, глубина b=8-10 мм. 3 ил. синхронная реактивная машина, патент № 2422972

синхронная реактивная машина, патент № 2422972 синхронная реактивная машина, патент № 2422972 синхронная реактивная машина, патент № 2422972

Формула изобретения

Синхронная реактивная машина, содержащая на статоре многофазную силовую обмотку, равномерно распределенную вдоль внутренней расточки статора и предназначенную для подключения к вентильному преобразователю, а также многофазную обмотку возбуждения с полным шагом, предназначенную для подключения к управляемым возбудителям, отличающаяся тем, что по краям каждого из полюсов ротора выполнено рифление в виде канавок с шагом h=8-10 мм, и основания которых расположены в плоскостях, параллельных оси вращения ротора, при этом ширина каждой канавки а=2-4 мм, глубина b=8-10 мм.

Описание изобретения к патенту

Изобретение относится к электротехнике и может быть использовано, например, в регулируемых электроприводах общепромышленных механизмов, а также в транспортных средствах, а именно: в источниках питания бортовой сети автомобилей, тракторов, вездеходов и т.д.

Известны синхронные реактивные машины, которые имеют бесконтактное исполнение (см. Кононенко Е.В. Синхронные реактивные машины / Е.В.Кононенко. - М.: Энергия, 1970. - 208 с.). Однако эти электрические машины имеют неудовлетворительные массогабаритные показатели, а попытки их улучшения требуют значительного усложнения конструкции ротора.

Наиболее близким изобретением к заявляемой машине является синхронная реактивная машина, содержащая многофазную силовую обмотку и многофазную обмотку возбуждения с полным шагом, подключаемую к управляемым возбудителям (патент РФ № 2240640, МПК H02G 1/02. Синхронный реактивный генератор автономной энергетической установки и способ управления им / Ю.С.Усынин, С.М.Бутаков, М.А.Григорьев, К.М.Виноградов. Заявлено 20.06.03, № 2003118611/09. Опубликовано 20.11.04. Бюл. № 32). Особенностью электрической машины, описанной в этом прототипе, является то, что ее возбуждение создается по продольной оси не обмоткой возбуждения, расположенной на роторе, как в обычных синхронных машинах (и которая отсутствует в прототипе), а током той фазы из дополнительных обмоток возбуждения, размещенных на статоре, витки которой в рассматриваемый момент времени расположены напротив межполюсного промежутка ротора и магнитная ось которой направлена, следовательно, вдоль продольной оси машины. При вращении ротора витки обмотки возбуждения предыдущей фазы оказываются расположенными не в межполюсном промежутке, а напротив полюса ротора, поэтому ток в этой фазе уменьшают до нуля. Однако процесс снижения тока в витках обмотки возбуждения предыдущей фазы и увеличения тока возбуждения в витках обмотки возбуждения последующей фазы происходит не мгновенно, а во времени, так как витки обмотки возбуждения распределены равномерно по пазам каждой фазной зоны статора. В результате, когда край полюса при вращении ротора надвигается на очередную фазную зону статора, то часть витков обмотки возбуждения оказывается расположенной над полюсом, а часть - над межполюсным промежутком, что приводит к пульсациям магнитодвижущей силы (МДС), создаваемой обмоткой возбуждения и пульсациям результирующей МДС, и в итоге - повышенным добавочным магнитным потерям ротора. Особенно эти потери велики на краях массивного (нешихтованного) ротора.

В основу предлагаемого изобретения положена техническая задача, заключающаяся в уменьшении добавочных магнитных потерь ротора, связанных с пульсациями магнитного потока из-за пульсаций МДС, создаваемой обмоткой возбуждения.

Решение поставленной задачи достигается тем, что в синхронной реактивной машине, содержащей на статоре многофазную силовую обмотку, равномерно распределенную вдоль внутренней расточки статора и предназначенную для подключения к вентильному преобразователю, а также многофазную обмотку возбуждения с полным шагом, предназначенную для подключения к управляемым возбудителям, согласно изобретению по краям каждого из полюсов ротора выполнено рифление в виде канавок с шагом h=8-10 мм, основания которых расположены в плоскостях, параллельных оси вращения ротора, при этом ширина каждой канавки a=2-4 мм, глубина b=8-10 мм.

Предлагаемое техническое решение сохраняет все основные технические преимущества, характерные для прототипа - простоту конструкции, высокую технологичность изготовления электрической машины. Бесконтактное исполнение в сочетании с отсутствием обмотки на роторе повышает надежность работы подшипников и всей машины; возможность выполнить ротор массивным (т.е. полюса ротора и вал из одной цельной заготовки) существенно повышает его прочность и поперечную жесткость, что позволяет получать высокие угловые скорости и большие перегрузки по моменту. Вместе с тем предлагаемое решение позволяет снизить добавочные магнитные потери ротора. Это объясняется, во-первых, тем, что рифления значительно увеличивают длину (а следовательно, величину электрического сопротивления) контуров вихревых токов от высших гармоник, которые, как известно, замыкаются по поверхности ротора. Во-вторых, рифления поверхности увеличивают площадь охлаждающей поверхности краев полюсов ротора.

Сущность изобретения поясняется чертежами, где:

- на фиг.1 дан схематичный поперечный разрез синхронной реактивной машины;

- на фиг.2 - вид на край полюса ротора по М;

- на фиг.3 - вид на край полюса ротора по N;

На фиг.1 представлена в разрезе шестифазная двухполюсная синхронная реактивная машина. Статор 1, содержащий многофазную силовую обмотку 2, в поперечном сечении содержит шесть фазных зон A1-a1, A2-a2, B1-b1, B2-b2, C1-c1, C2-c2. Каждая фазная зона занимает пространственный угол, равный 30°.

Ротор 3 синхронной реактивной машины выполнен явнополюсным. Длины полюсной дуги и межполюсного промежутка равны и составляют 90° (фиг.1). По краям каждого из полюсов ротора (фиг.2, 3) выполнено рифление в виде канавок 4, которые расположены на наружной поверхности каждого полюса с шагом h=8-10 мм. Основание канавок 4 расположено в плоскости Q, параллельной оси вращения ротора, при этом ширина каждой канавки a=2-4 мм, глубина b=8-10 мм.

Указанные размеры канавок не снижают механическую прочность ротора, но при этом заметно уменьшают величину магнитных потерь ротора.

Примеры работы и конкретного выполнения синхронной реактивной машины (СРМ2) по заявляемой схеме в сопоставлении с вариантом СРМ1 без рифлений на роторе в виде канавок.

Пример 1. Исходный образец СРМ1 мощностью PН=50 кВт, в котором ротор выполнен без рифлений краев полюса при МДС пульсаций порядка 20% имел перегрев краев полюса около 100°C.

Пример 2. В экспериментальном образце СРМ2 мощностью PН =50 кВт размеры канавок рифления выполнены следующими: глубина b=8 мм, ширина a=4 мм, шаг h=10 мм, при МДС пульсаций порядка 20%, перегрев краев полюса составил около 40°C.

Промышленная применимость синхронной реактивной машины, по заявленной схеме.

Синхронная реактивная машина, благодаря бесконтактности схемы, высокой механической прочности и жесткости ротора может быть рекомендована в первую очередь для транспортных установок, работающих в тяжелых и особо тяжелых условиях эксплуатации (например, вездеходы, промышленные тракторы). Она может быть рекомендована и для общепромышленных установок.

Класс H02K19/10 многофазные 

синхронный микродвигатель с электромагнитным униполярным возбуждением -  патент 2516286 (20.05.2014)
разделенная вдоль оси конструкция статора для электродвигателей -  патент 2507662 (20.02.2014)
погружной синхронный электродвигатель -  патент 2498484 (10.11.2013)
синхронный реактивный двигатель с электромагнитной редукцией -  патент 2497264 (27.10.2013)
шестифазный вентильно-индукторный двигатель, управляемый трехфазным током синусоидальной формы -  патент 2494518 (27.09.2013)
шестифазный вентильно-индукторный двигатель с минимальными шумами, вибрациями и пульсациями момента, способ и устройство управления -  патент 2483416 (27.05.2013)
трехфазный высокоскоростной вентильно-индукторный двигатель с минимальными шумами, вибрациями и пульсациями момента, способ и устройство управления -  патент 2482591 (20.05.2013)
трехфазный вентильно-индукторный двигатель с минимальными шумами, вибрациями и пульсациями момента, способ и устройство управления -  патент 2482590 (20.05.2013)
редукторная электрическая машина с полюсным зубчатым индуктором -  патент 2477917 (20.03.2013)
реактивная коммутируемая электрическая машина с поворотной симметрией -  патент 2450410 (10.05.2012)

Класс H02K19/24 с безобмоточным ротором из мягкого железа с переменным магнитным сопротивлением 

Класс H02K29/03 с магнитными цепями, специально предназначенными для исключения закручивающих пульсаций или самовозбуждения

Наверх