способ получения полипептидных смесей с использованием гидрогенолиза

Классы МПК:C08G69/10 альфа-аминокислоты
A61K38/00 Лекарственные препараты, содержащие пептиды
A61P25/00 Лекарственные средства для лечения нервной системы
A61P37/06 иммунодепрессанты, например средства против отторжения трансплантата
Автор(ы):
Патентообладатель(и):ТЕВА ФАРМАСЬЮТИКАЛ ИНДАСТРИЗ, ЛТД. (IL)
Приоритеты:
подача заявки:
2006-01-20
публикация патента:

Изобретение относится к усовершенствованному способу получения смеси ацетатных солей полипептидов, каждый из которых состоит из глутаминовой кислоты, аланина, тирозина и лизина, который обеспечивает пониженную продукцию водных отходов и улучшенную регуляцию максимальной молекулярной массы смеси ацетатных солей полипептидов. 3 н. и 22 з.п. ф-лы.

Формула изобретения

1. Способ получения смеси ацетатных солей полипептидов, каждый из которых состоит из глутаминовой кислоты, аланина, тирозина и лизина, причем смесь имеет требуемую максимальную молекулярную массу, включающий:

a) полимеризацию N-карбоксиангидридов тирозина, аланина, способ получения полипептидных смесей с использованием гидрогенолиза, патент № 2419638 -бензилглутамата и трифторацетиллизина в присутствии инициатора в количестве от 0,01 до 20% по массе в течение подходящего периода времени и при подходящей температуре с образованием смеси защищенных полипептидов, смесь которых в незащищенной форме имеет первую максимальную молекулярную массу;

b) удаление защитной бензильной группы из смеси защищенных полипептидов путем контактирования полипептидов с катализатором гидрогенолиза и водородом с получением смеси защищенных трифторацетилом полипептидов, смесь которых в незащищенной форме имеет первую максимальную молекулярную массу;

c) удаление защитной трифторацетильной группы у защищенных трифторацетилом полипептидов путем контактирования полипептидов с раствором органического основания с образованием смеси полипептидов, смеси которых в незащищенной форме имеют первую максимальную молекулярную массу;

d) удаление свободных трифторацетильных групп и низкомолекулярных примесей путем ультрафильтрации с получением смеси полипептидов, каждый из которых состоит из глутаминовой кислоты, аланина, тирозина и лизина; и

e) контактирование смеси полипептидов, каждый из которых состоит из глутаминовой кислоты, аланина, тирозина и лизина, с водным раствором уксусной кислоты с образованием смеси ацетатных солей полипептидов, каждый из которых состоит из глутаминовой кислоты, аланина, тирозина и лизина, имеющих требуемую максимальную молекулярную массу.

2. Способ по п.1, где первая максимальная молекулярная масса составляет от 2000 до 40000 Да.

3. Способ по п.2, где первая максимальная молекулярная масса составляет от 4700 до 11000 Да.

4. Способ по п.1, в котором катализатором гидрогенолиза является палладий на угле, никель Ренея, Pt, Pt/C, PtO2, Pd(OH) 2, Rh/C или RhCl(PPh3)3;

стадию контактирования полипептидов с катализатором гидрогенолиза осуществляют в растворителе, выбранном из группы, состоящей из метанола, этанола или изопропанола;

инициатором является первичный амин, диалкиламин или метоксид натрия;

количество инициатора составляет от 1 до 10% по массе; или

органическое основание на стадии с) является водным органическим основанием.

5. Способ по п.4, где количество инициатора составляет от 2 до 5% по массе.

6. Способ по п.4, в котором катализатором гидрогенолиза является палладий на угле.

7. Способ по п.6, в котором массовое отношение защищенного полипептида к катализатору палладий на угле составляет 10:1.

8. Способ по п.4, в котором растворителем является метанол.

9. Способ по п.4, в котором инициатором является диэтиламин.

10. Способ по п.4, в котором водным органическим основанием является первичный, вторичный или третичный амин или метанольный раствор аммиака.

11. Способ по п.10, в котором водным органическим основанием является пиперидин.

12. Способ по любому из пп.1-11, дополнительно включающий смешивание смеси ацетатных солей полипептидов с фармацевтически приемлемым носителем.

13. Способ получения смеси защищенных трифторацетилом полипептидов, каждый из которых состоит из глутаминовой кислоты, аланина, тирозина и трифторацетиллизина, причем смесь полипептидов в незащищенной форме имеет первую максимальную молекулярную массу, включающий:

a) полимеризацию N-карбоксиангидридов тирозина, аланина, способ получения полипептидных смесей с использованием гидрогенолиза, патент № 2419638 -бензилглутамата и трифторацетиллизина в присутствии инициатора в количестве от 0,01 до 20% по массе в течение подходящего периода времени и при подходящей температуре с получением смеси защищенных полипептидов, смесь которых в незащищенной форме имеет первую максимальную молекулярную массу; и

b) удаление защитной бензильной группы из смеси защищенных полипептидов путем контактирования полипептидов с катализатором гидрогенолиза и водородом с получением смеси защищенных трифторацетилом полипептидов, каждый из которых состоит из глутаминовой кислоты, аланина, тирозина и трифторацетиллизина, и причем смесь полипептидов в незащищенной форме имеет первую максимальную молекулярную массу.

14. Способ по п.13, в котором катализатором гидрогенолиза является палладий на угле, никель Ренея, Pt, Pt/C, PtO2, Pd(OH)2, Rh/C или RhСl(PPh3)3;

стадию контактирования полипептидов с катализатором гидрогенолиза осуществляют в растворителе, выбранном из группы, состоящей из метанола, этанола или изопропанола;

инициатором является первичный амин, диалкиламин или метоксид натрия; или количество инициатора составляет от 1 до 10% по массе.

15. Способ по п.14, где количество инициатора составляет от 2 до 5% по массе.

16. Способ по п.14, в котором катализатором гидрогенолиза является палладий на угле.

17. Способ по п.16, в котором массовое отношение защищенного полипептида к катализатору палладий на угле составляет 10:1.

18. Способ по п.14, в котором растворителем является метанол.

19. Способ по п.14, в котором инициатором является диэтиламин.

20. Способ по п.13, где первая максимальная молекулярная масса составляет от 2000 до 40000 Да.

21. Способ по п.13, где первая максимальная молекулярная масса составляет от 4700 до 11000 Да.

22. Способ получения смеси ацетатных солей полипептидов, каждый из которых состоит из глутаминовой кислоты, аланина, тирозина и лизина, причем смесь имеет требуемую максимальную молекулярную массу, включающий:

a) получение смеси трифторацетил защищенного полипептида в соответствии со способом по любому из пп.13-21,

b) обработку смеси, полученной на стадии а), раствором органического основания,

c) удаление свободных трифторацетильных групп и низкомолекулярных примесей путем ультрафильтрации с получением смеси полипептидов, каждый из которых состоит из глутаминовой кислоты, аланина, тирозина и лизина; и

d) контактирование смеси полипептидов с водным раствором уксусной кислоты с образованием смеси ацетатных солей полипептидов, каждый из которых состоит из глутаминовой кислоты, аланина, тирозина и лизина, имеющих требуемую максимальную молекулярную массу.

23. Способ по п.22, где органическим основанием является водное органическое основание.

24. Способ по п.23, в котором водным органическим основанием является первичный, вторичный или третичный амин или метанольный раствор аммиака.

25. Способ по п.24, в котором водным органическим основанием является пиперидин.

Описание изобретения к патенту

В данном описании различные публикации упоминаются путем их полного цитирования. Содержание этих публикации во всей их полноте включено в данное описание путем ссылки, для более полного описания состояния в области, к которой относится это изобретение.

Уровень техники

Ацетат глатирамера (GA) является смесью полипептидов, которая одобрена для лечения рассеянного склероза. «Копаксон»®, известное торговое наименование фармацевтической композиции, которая содержит ацетат глатирамера (GA) в качестве активного ингредиента, содержит ацетатные соли синтетических полипептидов, состоящих из четырех природных аминокислот: L-глутаминовой кислоты, L-аланина, L-тирозина и L-лизина со средними молярными фракциями 0,141; 0,427; 0,095 и 0,338 соответственно. Средняя молекулярная масса ацетата глатирамера составляет 4700-11000 дальтон. Химически ацетат глатирамера определяется как ацетат (соль) полимера L-глутаминовой кислоты с L-аланином, L-лизином и L-тирозином. Его структурная формула представляет собой:

(Glu, Ala, Lys, Tyr) х·хCH3COOH

(C5 H9NO4способ получения полипептидных смесей с использованием гидрогенолиза, патент № 2419638 C3H7NO2способ получения полипептидных смесей с использованием гидрогенолиза, патент № 2419638 C6H14N2O2способ получения полипептидных смесей с использованием гидрогенолиза, патент № 2419638 C9H11NO3)х·хC 2H4O2

CAS - 147245-92-9

(«Copaxone», Physician's Desk Reference , (2000), Medical Economics Co., Inc., (Montvale, NJ), 3115.)

Способы получения полипептидов этого типа, включая ацетат глатирамера, описаны в патенте США № 3849550, опубликованном 19 ноября 1974, Teitelbaum et al., патенте США № 5800808, опубликованном 1 сентября 1998, Konfino et al., и PCT International Publication No. WO 00/05250, опубликованной 3 февраля 2000 г (Ahanori et al.), которые включены в данное описание в качестве ссылки. Например, полипептиды этого типа получали из N-карбоксиангидридов тирозина, аланина, способ получения полипептидных смесей с использованием гидрогенолиза, патент № 2419638 -бензилглутамата и способ получения полипептидных смесей с использованием гидрогенолиза, патент № 2419638 -N-трифторацетиллизина. Полимеризацию осуществляли при комнатной температуре в безводном диоксане с диэтиламином в качестве инициатора. Деблокирование способ получения полипептидных смесей с использованием гидрогенолиза, патент № 2419638 -карбоксильной группы глутаминовой кислоты производили бромистым водородом (НВr) в ледяной уксусной кислоте и за ним следовало удаление трифторацетильных групп с лизиновых остатков с помощью 1М пиперидина (патент США № 3849550, опубликованный 19 ноября 1974 г, Teitelbaum et al.).

Для удаления защиты у способ получения полипептидных смесей с использованием гидрогенолиза, патент № 2419638 -карбоксильной группы глутаминовой кислоты необходимо использование больших количеств НВr/уксусной кислоты. В результате получается большой объем кислотных отходов. Утилизация этих кислотных отходов является трудным и дорогостоящим процессом. Желательны другие способы получения таких полипептидов, чтобы устранить проблемы связанные с кислотными отходами.

Сущность изобретения

Объектом данного изобретения является способ получения смеси ацетатных солей полипептидов, каждый из которых состоит из глутаминовой кислоты, аланина, тирозина и лизина, причем смесь имеет требуемую максимальную молекулярную массу, включающий:

а) полимеризацию N-карбоксиангидридов тирозина, аланина, способ получения полипептидных смесей с использованием гидрогенолиза, патент № 2419638 -бензилглутамата и трифторацетиллизина в присутствии инициатора в количестве от 0,01% до 20% по массе в течение подходящего периода времени и при подходящей температуре с образованием смеси защищенных полипептидов, причем смесь полипептидов в незащищенной форме имеет первую максимальную молекулярную массу;

b) удаление защитной бензильной группы из смеси защищенных полипептидов путем контактирования полипептидов с катализатором гидрогенолиза и водородом с получением смеси защищенных трифторацетилом полипептидов, смесь которых в незащищенной форме имеет первую максимальную молекулярную массу;

с) удаление защитной трифторацетильной группы у защищенных трифоторацетилом полипептидов путем контактирования полипептидов с раствором органического основания с образованием смеси полипептидов, причем смеси полипептидов в незащищенной форме имеют первую максимальную молекулярную массу;

d) удаление свободных трифторацетильных групп и низкомолекулярных примесей путем ультрафильтрации с получением смеси полипептидов, каждый из которых состоит из глутаминовой кислоты, аланина, тирозина и лизина; и

е) контактирование смеси полипептидов, каждый из которых состоит из глутаминовой кислоты, аланина, тирозина и лизина, с водным раствором уксусной кислоты с образованием смеси ацетатных солей полипептидов, каждый из которых состоит из глутаминовой кислоты, аланина, тирозина и лизина, имеющих требуемую максимальную молекулярную массу.

Объектом изобретения является также способ получения смеси защищенных трифторацетилом полипептидов, каждый из которых состоит из глутаминовой кислоты, аланина, тирозина и трифторацетиллизина, причем смесь полипептидов в незащищенной форме имеет максимальную молекулярную массу, включающий:

а) полимеризацию N-карбоксиангидридов тирозина, аланина, способ получения полипептидных смесей с использованием гидрогенолиза, патент № 2419638 -бензилглутамата и трифторацетиллизина в присутствии инициатора в количестве от 0,01% до 20% по массе в течение подходящего периода времени и при подходящей температуре с получением смеси защищенных полипептидов, причем смесь полипептидов в незащищенной форме имеет первую максимальную молекулярную массу;

b) удаление защитной бензильной группы из смеси защищенных полипептидов путем контактирования полипептидов с катализатором гидрогенолиза и водородом с получением смеси защищенных трифторацетилом полипептидов, каждый из которых состоит из глутаминовой кислоты, аланина, тирозина и трифторацетиллизина, и причем эта смесь полипептидов в незащищенной форме имеет первую максимальную молекулярную массу.

Подробное описание изобретения

Объектом данного изобретения является способ получения смеси ацетатных солей полипептидов, каждый из которых состоит из глутаминовой кислоты, аланина, тирозина и лизина, причем смесь имеет требуемую максимальную молекулярную массу, включающий:

а) полимеризацию N-карбоксиангидридов тирозина, аланина, способ получения полипептидных смесей с использованием гидрогенолиза, патент № 2419638 -бензилглутамата и трифторацетиллизина в присутствии инициатора в количестве от 0,01% до 20% по массе в течение подходящего периода времени и при подходящей температуре с образованием смеси защищенных полипептидов, причем смесь полипептидов в незащищенной форме имеет первую максимальную молекулярную массу;

b) удаление защитной бензильной группы у смеси защищенных полипептидов путем контактирования полипептидов с катализатором гидрогенолиза и водородом с получением смеси защищенных трифторацетилом полипептидов, смесь которых в незащищенной форме имеет первую максимальную молекулярную массу;

с) удаление трифторацетильной защитной группы у защищенных трифоторацетилом полипептидов путем контактирования полипептидов с раствором органического основания с образованием смеси полипептидов, причем смеси полипептидов в незащищенной форме имеют первую максимальную молекулярную массу;

d) удаление свободных трифторацетильных групп и низкомолекулярных примесей путем ультрафильтрации с получением смеси полипептидов, каждый из которых состоит из глутаминовой кислоты, аланина, тирозина и лизина; и

е) контактирование смеси полипептидов, каждый из которых состоит из глутаминовой кислоты, аланина, тирозина и лизина, с водным раствором уксусной кислоты с образованием смеси ацетатных солей полипептидов, каждый из которых состоит из глутаминовой кислоты, аланина, тирозина и лизина, имеющих требуемую максимальную молекулярную массу.

В одном из вариантов осуществления данного изобретения первая максимальная молекулярная масса может составлять от 2000 дальтон до 40000 дальтон, или от 2000 дальтон до 20000 дальтон, или от 4000 дальтон до 8600 дальтон, или от 4000 дальтон до 8000 дальтон, или от 6250 дальтон до 8400 дальтон, или от 2000 дальтон до 13000 дальтон, или от 4700 дальтон до 13000 дальтон, или от 10000 дальтон до 25000 дальтон, или от 15000 дальтон до 25000 дальтон, или от 18000 дальтон до 25000 дальтон, или от 20000 дальтон до 25000 дальтон, или от 4700 дальтон до 11000 дальтон, или от 7000 дальтон или от 13000 дальтон до 18000, или 15000 дальтон, или 12500 дальтон.

В одном из вариантов осуществления данного изобретения требуемая максимальная молекулярная масса может быть от 2000 дальтон до 40000 дальтон, или от 2000 дальтон до 20000 дальтон, или от 4000 дальтон до 8600 дальтон, или от 4000 дальтон до 8000 дальтон, или от 6250 дальтон до 8400 дальтон, или от 2000 дальтон до 13000 дальтон, или от 4700 дальтон до 13000 дальтон, или от 10000 дальтон до 25000 дальтон, или от 15000 дальтон до 25000 дальтон, или от 18000 дальтон до 25000 дальтон, или от 20000 дальтон до 25000 дальтон, или от 4700 дальтон до 11000 дальтон, или от 7000 дальтон или от 13000 дальтон до 18000, или 15000 дальтон, или 12500 дальтон.

В одном из вариантов осуществления данного изобретения катализатором гидрогенолиза может быть палладий на угле, никель Ренея, Рt, Рt/С, РtО 2, Рd(ОН)2, Rh/С или RhСl(РРh3) 3.

В другом воплощении катализатором гидрогенолиза может быть палладий на угле.

В еще одном воплощении массовое отношение защищенного полипептида к катализатору палладий на угле может быть 10:1.

В одном из вариантов осуществления данного изобретения стадия контактирования полипептидов с катализатором гидрогенолиза может быть осуществлена в растворителе, выбранном из группы, состоящей из метанола, этанола или изопропанола.

В другом воплощении растворитель может быть метанолом.

В одном из вариантов осуществления данного изобретения инициатором может быть первичный амин, диалкиламин или метоксид натрия.

В другом воплощении инициатором может быть диэтиламин.

В еще одном воплощении количество инициатора может составлять от 0,05% до 19% по массе, или от 0,1% до 17% по массе, или от 0,5% до 15% по массе, или от 1% до 10% по массе, или от 2% до 5% по массе, или 2% по массе, или 5% по массе.

В одном из вариантов осуществления данного изобретения органическим основанием на стадии с) может быть водное органическое основание.

В другом варианте осуществления данного изобретения водным органическим основанием может быть первичный, вторичный или третичный амин, или метанольный раствор аммиака.

В еще одном варианте осуществления данного изобретения водным органическим основанием может быть пиперидин.

Рассматриваемое изобретение представляет также смесь ацетатных солей полипептидов, полученную представленными ранее способами.

Рассматриваемое изобретение, кроме того, представляет фармацевтическую композицию, содержащую представленную ранее смесь и фармацевтически приемлемый носитель.

Рассматриваемое изобретение, кроме того, еще представляет способ получения фармацевтической композиции, включающий смешивание представленной выше смеси с фармацевтически приемлемым носителем.

Рассматриваемое изобретение, кроме того, представляет усовершенствованную в способе получения фармацевтическую композицию, содержащую водный раствор смеси ацетатных солей полипептидов, каждый из которых состоит из глутаминовой кислоты, аланина, тирозина и лизина, причем данная смесь имеет требуемую максимальную молекулярную массу, причем усовершенствование состоит в получении смеси ацетатных солей полипептидов любым одним из представленных ранее способов.

Рассматриваемое изобретение представляет способ получения смеси защищенных трифторацетилом полипептидов, каждый из которых состоит из глутаминовой кислоты, аланина, тирозина и трифторацетиллизина, причем смесь полипептидов в незащищенной форме имеет первую максимальную молекулярную массу, включающий:

а) полимеризацию N-карбоксиангидридов тирозина, аланина, способ получения полипептидных смесей с использованием гидрогенолиза, патент № 2419638 -бензилглутамата и трифторацетиллизина в присутствии инициатора в количестве от 0,01% до 20% по массе в течение подходящего периода времени и при подходящей температуре с получением смеси защищенных полипептидов, причем смесь полипептидов в незащищенной форме имеет первую максимальную молекулярную массу;

b) удаление защитной бензильной группы из смеси защищенных полипептидов путем контактирования полипептидов с катализатором гидрогенолиза и водородом с получением смеси защищенных трифторацетилом полипептидов, каждый из которых состоит из глутаминовой кислоты, аланина, тирозина и трифторацетиллизина, причем эта смесь полипептидов в незащищенной форме имеет первую максимальную молекулярную массу.

В одном из вариантов осуществления данного изобретения катализатором гидрогенолиза может быть палладий на угле, никель Ренея, Рt, Рt/С, РtО2, Рd(ОН)2, Rh/С или RhСl(РРh 3)3.

В другом воплощении катализатором гидрогенолиза может быть палладий на угле.

В еще одном воплощении массовое отношение защищенного полипептида к катализатору, палладию/угле может быть 10:1.

В одном из вариантов осуществления данного изобретения стадия контактирования полипептидов с катализатором гидрогенолиза может осуществляться в растворителе, выбранном из группы, состоящей из метанола, этанола или изопропанола.

В другом воплощении растворитель может быть метанолом.

В еще одном другом воплощении инициатором может быть первичный амин, диалкиламин или метоксид натрия.

В одном из вариантов осуществления данного изобретения инициатором может быть диэтиламин.

В другом воплощении количество имициатора может составлять от 0,05% до 19% по массе, или от 0,1% до 17% по массе, или от 0,5% до 15% по массе, или от 1% до 10% по массе, или от 2% до 5% по массе, или 2% по массе, или 5% по массе.

В одном из вариантов осуществления данного изобретения первая максимальная молекулярная масса может составлять от 2000 дальтон до 40000 дальтон, или от 2000 дальтон до 20000 дальтон, или от 4000 дальтон до 8600 дальтон, или от 4000 дальтон до 8000 дальтон, или от 6250 дальтон до 8400 дальтон, или от 2000 дальтон до 13000 дальтон, или от 4700 дальтон до 13000 дальтон, или от 10000 дальтон до 25000 дальтон, или от 15000 дальтон до 25000 дальтон, или от 18000 дальтон до 25000 дальтон, или от 20000 дальтон до 25000 дальтон, или от 4700 дальтон до 11000 дальтон, или от 7000 дальтон или от 13000 дальтон до 18000, или 15000 дальтон, или 12500 дальтон.

Рассматриваемое изобретение представляет также смесь защищенных трифторацетилом полипептидов, каждый из которых состоит из глутаминовой кислоты, аланина, тирозина и трифторацетиллизина, полученную любым одним из непосредственно представленных выше способов.

Рассматриваемое изобретение представляет также способ получения смеси ацетатных солей полипептидов, каждый из которых состоит из глутаминовой кислоты, аланина, тирозина и лизина, причем эта смесь имеет требуемую максимальную массу, включающий:

а) обработку представленной выше смеси раствором органического основания,

b) удаление свободных трифторацетильных групп и низкомолекулярных примесей путем ультрафильтрации с получением смеси полипептидов, каждый из которых состоит из глутаминовой кислоты, аланина, тирозина и лизина,

с) контактирование смеси полипептидов с водным раствором уксусной кислоты с образованием смеси ацетатных солей полипептидов, каждый из которых состоит из глутаминовой кислоты, аланина, тирозина и лизина, имеющих требуемую максимальную молекулярную массу.

В одном из вариантов осуществления представленного выше способа органическим основанием может быть водное органическое основание.

В другом варианте осуществления представленного выше способа водным органическим основанием может быть первичный, вторичный или третичный амин, или метанольный раствор аммиака.

В еще одном варианте осуществления представленного выше способа водным органическим основанием может быть пиперидин.

Подробное описание экспериментов

ПРИМЕР 1

Синтез поли[5-бензил-l-Glu, N6-ТFА-L-Lуs, L-Аlа, L-Туr]

7,43 г N-карбоксиангидрида L-тирозина добавляли к 260 мл диоксана, смесь нагревали до 60°С в течение 20 минут и затем фильтровали. К 630 мл диоксана добавляли 34,61 г N-карбоксиангидрида N6-трифторацетил-L-лизина, раствор перемешивали при 20-25°С в течение 15 минут и затем фильтровали. 21,25 г N-карбоксиангидрида L-аланина добавляли к 395 мл диоксана, раствор перемешивали при 20-25°С в течение 15 минут и затем фильтровали. 14,83 г N-карбоксиангидрида 5-бензил-L-глутамата добавляли к 260 мл диоксана, раствор перемешивали при 20-25°С в течение 10 минут и затем фильтровали.

Растворы объединяли в 2 л колбе Эрленмейера, оборудованной механической мешалкой. Растворы перемешивали между собой в течение 5 минут. Затем к реакционной смеси добавляли 3,9 г диэтиламина. Смесь перемешивали в течение 24 часов при 23-27°С.

Реакционную смесь затем добавляли к 5 л деионизированной воды. Твердый продукт реакции отфильтровывали, промывали и сушили при 60°С под вакуумом. Получали 65,6 г белого-не совсем белого порошка твердого вещества.

ПРИМЕР 2

Удаление защиты (гидрогенолиз) поли[5-бензил-L-Glu, N6-ТFА-L-Lуs, L-Аlа, L-Туr] с образованием поли[L-Glu, N6-ТFА-L-Lуs, L-Аlа, L-Туr]

18 г твердого продукта, синтезированного, как описано в примере 1, суспендировали в 540 мл метанола. Добавляли 1,8 г влажного палладия на древесном угле (10% Рd на древесном угле типа порошка 87L, Johnson Matthey - Precious Metals Division). Гидрогенолиз осуществляли путем пропускания Н2 через смесь при давлении 2 атм в течение 7 часов. Смесь фильтровали. Реакционную смесь концентрировали до 270 мл и добавляли к 600 мл воды. Смесь перемешивали в течение одного часа, смесь фильтровали и сушили с получением 14 г белого-не совсем белого порошка.

ПРИМЕР 3

Удаление трифторацетильной группы с получением поли[L-Glu, L-Lуs, L-Аlа, L-Туr]

9 г продукта, синтезированного в примере 2, добавляли к 540 мл воды. К смеси добавляли 60 мл пиперидина и смесь перемешивали при комнатной температуре в течение 24 часов. Смесь фильтровали и получали прозрачный фильтрат с желтоватым оттенком. Ультрафильтрацию выполняли, используя 5-килодальтоновую мембрану для удаления всех низкомолекулярных примесей. После 6 циклов ультрафильтрования раствор подкисляли уксусной кислотой до тех пор, когда достигался рН 4,0. Добавляли воду и раствор подвергали ультрафильтрации до тех пор, когда получали рН 5,5. Раствор концентрировали и лиофилизировали в течение 60 часов. Получали 4,7 г белого, лиофилизированного осадка поли[L-Glu, L-Lуs, L-Аlа, L-Туr].

ПРИМЕР 4

Анализ молекулярной массы

Молекулярную массу продукта из примера 3 определяли, используя колонку для ВЭЖХ Superose 12 HR Gel Permeation, оборудованную УФ детектором. В качестве подвижной фазы использовали фосфатный буфер рН 1,5.

Общее время удерживания колонки определяли, используя 200 мкл ацетона, разбавленного 1 мл воды. Колонку калибровали, используя маркеры молекулярной массы ТV, применяя расчеты Millenium, которые описаны в патенте США 6514938, зарегистрированном 4 февраля 2003 (Gad et al.) (cм., в частности, пример 2), включенном в данное описание в качестве ссылки.

После калибровки готовили раствор 5 мг/мл продукта из примера 3. Измеряли максимум пика времени удерживания и максимальную молекулярную массу, как определено, был равен 12700 дальтон.

ПРИМЕР 5

Гидролиз и определение содержания аминокислот

Образец раствора получали, используя 10 мг полипептида из примера 3, добавленные к внутреннему контрольному раствору аргинина. Образец раствора гидролизовали, используя концентрированную НСl, содержащую 1% (в/о) фенола, в атмосфере N2 при 110°С в течение 24 часов. Готовили контрольные растворы аминокислот, каждый из которых содержит одну из: глутамата, аланина, тирозина и лизина НСl, и гидролизовали. С образцом раствора и контролями получали производные с помощью орто-фтальдиальдегида.

Образцы и контроли анализировали, используя колонку Merck LiChrosorb RP18 7 мкм, оборудованную УФ детектором. Мобильная фаза была градиентом фосфатного буфера рН 2,5/ацетонитрила. Молярные фракции аминокислот в полипептидном образце определяли по площади пика.

Аминокислота Молярная часть
Глутаминовая кислота 0,138
Аланин0,42
Тирозин 0,099
Лизин0,343

ПРИМЕР 6

Образование ацетатной соли

Продукт из любого одного из примеров 1-3 приводят в контакт с водным раствором уксусной кислоты с образованием ацетатной соли полипептида.

Обсуждение

Авторы описанного изобретения обнаружили, что гидрогенолиз эффективен для удаления бензильных групп с глутаматных остатков защищенных полипептидов. В частности, обнаружено, что использование гидрогенолиза в присутствии катализатора палладия/угле, является эффективным для удаления бензильных групп с глутаматных остатков с образованием трифторацетилполипептида, который защищен трифторацетильными группами по лизиновым остаткам. Катализатор, например, палладий на угле может быть удален и повторно использован с исключением тем самым ненужных затрат. Трифторацетильные группы затем удаляли с лизиновых остатков с помощью пиперидина.

Для удаления бензильных групп с глутаматных остатков можно использовать также и другие катализаторы гидрогенолиза. Такими известными катализаторами являются никель Ренея, Рt, Рt/С, РtО2 , Рd(ОН)2, Rh/С, RhСl(РРh3)3 и другие катализаторы из переходных металлов. Реакцию гидрогенолиза выполняли при температуре между 20°С и 100°С и давлении между 1 атм и 100 атм.

Использование гидрогенолиза вместо НВr/уксусной кислоты для удаления бензильных групп, однако, представило дополнительное осложнение. Когда используют НВr/уксусную кислоту, она имеет двойную функцию, как для удаления бензильных групп с глутаматных остатков, так и для расщепления полипептида с получением требуемой средней молекулярной массы смеси. При гидрогенолизе, однако, расщепления полипептида не происходит. Поэтому при раскрытом способе дополнительно модифицирован способ получения требуемой максимальной молекулярной массы путем использования специфических количеств инициатора реакции полимеризации.

Инициаторами, которые можно использовать, являются н-гексиламин и другие первичные амины, диэтиламин и другие диалкиламины или метоксид натрия, или любая комбинация инициаторов. В патенте США № 5800808, зарегистрированном 1 сентября 1998 (Konfino et al.) раскрыто использование 0,1-0,2% диэтиламина в качестве инициатора в процессе, проводимом при комнатной температуре в течение 24 часов, в котором также используют НВr для получения полипептидов с молекулярной массой в интервале 5000-9000 дальтон. В отличие от этого в примерах данной заявки использовано 3,9 г диэтиламина в качестве инициатора с 7,43 г N-карбоксиангидрида L-тирозина, 34,61 г N-карбоксиангидрида N6-трифторацетил-L-лизина, 21,25 г N-карбоксиангидрида L-аланина и 14,83 г N-карбоксиангидрида 5-бензил-L-глутамата при процессе, проводимом при температуре от 23ºС до 27ºС в течение 24 часов с получением смеси полипептидов со средней молекулярной массой в 12700 дальтон. На максимальную молекулярную массу смеси полипептидов влияет также температура процесса и время реакции.

В любом варианте осуществления представляемого изобретения определение максимальной молекулярной массы смеси полипептидов можно проводить после полимеризации полипептида, но перед удалением или бензильной защитной группы или трифторацетильной защитной группы. Альтернативно, в любом воплощении представляемого изобретения максимальная молекулярная масса смеси полипептидов может быть определена после удаления защитной бензильной группы, но перед удалением трифторацетильной защитной группы. Еще одной альтернативой в любом варианте осуществления рассматриваемого изобретения является определение максимальной молекулярной массы смеси полипептидов после удаления обеих защитных групп у полипептида. Регулирование максимальной молекулярной массы можно подобным же образом выполнять на упомянутых стадиях процесса известными методами, такими как хроматографическое фракционирование, фильтрование, ультрафильтрационный диализ, ферментативный гидролиз или седиментация.

Рассматриваемое изобретение представляет способ получения смеси ацетатных солей полипептидов, каждый из которых состоит из глутаминовой кислоты, аланина, тирозина и лизина, который обеспечивает пониженную продукцию водных отходов и улучшенную регуляцию максимальной молекулярной массы смеси ацетатных солей полипептидов.

Класс C08G69/10 альфа-аминокислоты

конъюгаты полиглутамат-аминокислота и способы -  патент 2472812 (20.01.2013)
способ получения смесей полипептидов с использованием очищенной бромистоводородной кислоты -  патент 2388764 (10.05.2010)
усовершенствованный сополимер-1 и способ его получения -  патент 2198900 (20.02.2003)
усовершенствованный сополимер-1 в сополимерных композициях -  патент 2161489 (10.01.2001)

Класс A61K38/00 Лекарственные препараты, содержащие пептиды

способ лечения рака толстой кишки -  патент 2529831 (27.09.2014)
внутрижелудочковая доставка ферментов при лизосомных болезнях накопления -  патент 2529830 (27.09.2014)
стабильные составы бортезомиба -  патент 2529800 (27.09.2014)
композиции для усиления антибактериальной активности миелопероксидазы и способы их применения -  патент 2529799 (27.09.2014)
способ лечения больных с синдромом внутрипеченочной портальной гипертензии -  патент 2529414 (27.09.2014)
фармацевтическое средство, содержащее эпитопные пептиды hig2 и urlc10, для лечения рака, способы и средства для индукции антигенпрезентирующей клетки и цитотоксического т-лимфоцита (цтл), антигенпрезентирующая клетка и цтл, полученные таким способом, способ и средство индукции иммунного противоопухолевого ответа -  патент 2529373 (27.09.2014)
модульный молекулярный конъюгат для направленной доставки генетических конструкций и способ его получения -  патент 2529034 (27.09.2014)
лейколектины и их применение -  патент 2528860 (20.09.2014)
модифицированный фактор виллебранда с удлиненным полупериодом существования in vivo, его применения и способы получения -  патент 2528855 (20.09.2014)
применение пептида актг (4-7)-пгп гепатопротекторного воздействия -  патент 2528741 (20.09.2014)

Класс A61P25/00 Лекарственные средства для лечения нервной системы

внутрижелудочковая доставка ферментов при лизосомных болезнях накопления -  патент 2529830 (27.09.2014)
9-[2-(4-изопропилфенокси)этил]аденин, обладающий антидепрессантным и противострессорным действием -  патент 2529817 (27.09.2014)
улучшение памяти у пациентов с оценкой 24-26 баллов по краткой шкале оценки психического статуса -  патент 2529815 (27.09.2014)
нейропротекторное фармакологическое средство -  патент 2528914 (20.09.2014)
новые бензолсульфонамидные соединения, способ их получения и применение в терапии и косметике -  патент 2528826 (20.09.2014)
новое производное пиразол-3-карбоксамида, обладающее антагонистической активностью в отношении рецептора 5-нт2в -  патент 2528406 (20.09.2014)
соединения и способы лечения боли и других заболеваний -  патент 2528333 (10.09.2014)
6-замещенные изохинолины и изохинолиноны полезные в качестве ингибиторов rho-киназы -  патент 2528229 (10.09.2014)
способ увеличения скорости психомоторных реакций анксиолитиком афобазол -  патент 2528110 (10.09.2014)
жировая эмульсия для искусственного питания тяжелобольных, нуждающихся в интенсивной терапии -  патент 2528108 (10.09.2014)

Класс A61P37/06 иммунодепрессанты, например средства против отторжения трансплантата

режим дозировки селективного агониста рецептора s1p1 -  патент 2519660 (20.06.2014)
кристаллические формы (r)-5-[3-хлор-4-(2, 3-дигидроксипропокси)бенз[z]илиден]-2-([z]-пропилимино)-3-о-толилтиазолидин-4-она -  патент 2519548 (10.06.2014)
способ профилактики и лечения отторжения почечного трансплантата -  патент 2508924 (10.03.2014)
средства поддержания индуцированной ремиссии -  патент 2505288 (27.01.2014)
новые замещенные пиридин-2-оны и пиридазин-3-оны -  патент 2500680 (10.12.2013)
соединения фениламинопиримидина и их применения -  патент 2498983 (20.11.2013)
способ лечения иммунной дисфункции, такой как реакция "трансплантат против хозяина" или "хозяин против трансплантата" -  патент 2497530 (10.11.2013)
гуманизированные антитела к cd19 и их применение для лечения онкологического, связанного с трансплантацией и аутоиммунного заболевания -  патент 2495882 (20.10.2013)
композиции для лечения воспалительного состояния кишечника -  патент 2495121 (10.10.2013)
производные пиридина в качестве модуляторов s1p1/edg1 рецептора -  патент 2492168 (10.09.2013)
Наверх