способ получения алюминиевых сплавов для прокатки фольги

Классы МПК:C22C1/02 плавлением 
C25C3/06 алюминия
Автор(ы):
Патентообладатель(и):Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный горный институт имени Г.В.Плеханова" (технический университет) (RU)
Приоритеты:
подача заявки:
2007-10-24
публикация патента:

Изобретение относится к металлургии. Способ включает введение расчетного количества кристаллического кремния в алюминиевый расплав в электролизере через подготовленные «окна» в корке электролизной ванны. Кристаллический кремний вводят в виде мелких и пылевидных фракций размером до 20 мм, помещенных в железные контейнеры для дополнительного легирования расплава железом. В качестве мелких и пылевидных фракций используют отходы производства кристаллического кремния. Ввод контейнеров с кремнием осуществляют в зоне электролизера с наибольшей интенсивностью циркуляции расплава. Достигается повышение физико-механических характеристик алюминиевого сплава за счет обеспечения полного растворения и равномерного распределения легирующих в расплаве. 3 з.п. ф-лы, 1 табл.

Формула изобретения

1. Способ получения алюминиевых сплавов для прокатки фольги, включающий растворение расчетного количества кристаллического кремния в алюминиево-кремниевой основе, в качестве которой используют сплав, получаемый в электролизерах для производства алюминия, отличающийся тем, что ввод расчетного количества кристаллического кремния осуществляют непосредственно в расплав электролизера для производства алюминия в виде мелких и пылевидных фракций посредством железных контейнеров, используемых для дополнительного легирования расплава железом.

2. Способ по п.1, отличающийся тем, что в качестве мелких и пылевидных фракций используют отходы производства кристаллического кремния.

3. Способ по п.1, отличающийся тем, что в качестве контейнеров для ввода кристаллического кремния используют железную трубу с отверстиями.

4. Способ по п.1, отличающийся тем, что ввод контейнеров с кристаллическим кремнием осуществляют в зоны с наибольшей интенсивностью циркуляции расплава.

Описание изобретения к патенту

Изобретение относится к области цветной металлургии, а именно к электролитическому производству алюминия, и может быть применено в процессах подготовки алюминиевых сплавов для прокатки фольги.

Алюминиевые сплавы для прокатки фольги группы 8ХХХ по международному стандарту ASTM с использованием железа и кремния являются базовыми для получения толстой и тонкой фольги. К основным маркам для получения фольговых заготовок относят сплавы 8011 - для получения тонкой фольги 6способ получения алюминиевых сплавов для прокатки фольги, патент № 2418084 20 мкм, 8079 - для получения фольги под лакировку 40способ получения алюминиевых сплавов для прокатки фольги, патент № 2418084 80 мкм, 8006 - для получения пищевой контейнерной фольги и медицинской упаковки.

Известен способ получения алюминиево-железистого сплава для прокатки фольги, включающий приготовление расплава, легирование железом и изготовление литой заготовки, в котором перегрев расплава алюминия осуществляют до 770-800°С, легирование проводят путем введения железа в виде пластин, плакированных с двух сторон алюминием, при отношении массы алюминия, плакирующего железные пластины, к массе железа в пластинах 1/68-1/26, причем общая масса железных пластин, плакированных алюминием, превышает содержание железа в сплаве на 1,4-3,8 мас. (RU, патент № 2049134, С22С 1/02, опубл. 27.11.1995).

Недостатком данного способа является то, что ввод железа в виде плакированных с двух сторон алюминием пластин не обеспечивает полное растворение и равномерное распределение железа в расплаве миксера, что приводит к получению заготовки с неоднородной структурой по всему объему и соответственно к получению фольги с низкими свойствами.

Наиболее близким к заявленному способу является способ получения низколегированного алюминиево-кремниевого сплава, включающий растворение расчетного количества кристаллического кремния в алюминиево-кремниевой основе, в качестве которой используют сплав, получаемый в электролизерах для производства алюминия с массовым отношение кремния в основе к общему содержанию кремния в получаемом сплаве не менее 0,45 (RU, патент № 2015187, С22С 1/02, опубл. 30.06.1994).

Недостаток этого способа заключается в том, что введение кремния в миксере не обеспечивает полное растворение расчетного количества кремния в алюминиево-кремниевой основе, в качестве которой используют сплав, получаемый в электролизерах для производства алюминия, не обеспечивает равномерность химического состава расплава и не обеспечивает равномерность распределения кремния в расплаве. Неравномерность распределения легирующих элементов в расплаве является фактором, отрицательно влияющим на физико-механические характеристики алюминиевых сплавов для прокатки фольги.

В основу изобретения положена задача создания способа получения алюминиевых сплавов для прокатки фольги, обеспечивающего полное растворение и устранение неравномерного распределения кристаллического кремния и железа в расплаве за счет улучшения перемешивания расплава, улучшения условий ввода кристаллического кремния и железа, уменьшения размеров частиц кристаллического кремния.

Техническим результатом изобретения является повышение физико-механических характеристик алюминиевых сплавов для прокатки фольги.

Достижение технического результата обеспечивается тем, что в способе получения алюминиевых сплавов для прокатки фольги, включающем растворение расчетного количества кристаллического кремния в алюминиево-кремниевой основе, в качестве которой используют сплав, получаемый в электролизерах для производства алюминия, ввод расчетного количества кристаллического кремния осуществляют в виде мелких и пылевидных фракций непосредственно в расплав электролизера для производства алюминия с использованием железных контейнеров, производя при этом дополнительное легирование расплава железом.

В качестве мелких и пылевидных фракций могут быть использованы отходы производства кристаллического кремния.

В качестве контейнеров для ввода кристаллического кремния может быть использована железная труба с отверстиями.

Ввод контейнеров с кристаллическим кремнием может быть осуществлен в зоны с наибольшей интенсивностью циркуляции расплава.

Осуществление ввода расчетного количества кристаллического кремния в виде мелких и пылевидных фракций непосредственно в расплав электролизера для производства алюминия с использованием железных контейнеров для осуществления их ввода в расплав и дополнительного легирования расплава железом обеспечивает полное растворение и равномерное распределение кремния и железа в расплаве за счет улучшения перемешивания расплава, улучшения условий ввода кристаллического кремния и железа, уменьшения размеров частиц кристаллического кремния.

Использование электролизера для получения алюминиевых сплавов для прокатки фольги обеспечивает высокие показатели по физико-механическим характеристикам, получаемые за счет достижения высококачественной структуры сплавов, а именно равномерной и мелкодисперсной эвтектики Al(способ получения алюминиевых сплавов для прокатки фольги, патент № 2418084 )-Si и равномерно распределенных по всему объему алюминиевой матрицы интерметаллидных фаз (интерметаллидов), которые всегда присутствуют в сплавах системы Al-Fe-Si. Это связано с тем, что использование электролизера для получения алюминиевого сплава для прокатки фольги обеспечивает по сравнению с традиционным способом подготовки этих сплавов в отражательных и индукционных печах следующие преимущества: во-первых, высокую температуру металла, во-вторых, модифицирующее действие на сплав со стороны жидких фторалюминатов натрия (равновесная концентрация натрия в металле алюминиевых электролизеров составляет в среднем 0,002-0,004 мас.%), в третьих, наличие непрерывной циркуляции металла в электролизере за счет значительного динамического потока расплава внутри шахты под действием электромагнитных сил.

Циркуляция металла в ванне электролизера обеспечивает качественное перемешивание легирующих добавок в жидком расплаве алюминия и равномерность химического состава расплава. При этом ввод расчетного количество компонентов при помощи железного контейнера обеспечивает полное растворение расчетного количества железа и кремния в расплаве. После растворения железного контейнера происходит прямое попадание мелких и пылевидных фракций кристаллического кремния непосредственно в металл, обеспечивая тем самым полное растворение расчетного количества кристаллического кремния.

Мелкие и пылевидные частицы, являясь центрами кристаллизации расплава, обеспечивают формирование мелкодисперсной структуры сплава (уменьшается размер первичных кристаллов кремния и измельчается эвтектика), а также равномерность распределения первичных кристаллов кремния и эвтектики в структуре фольги за счет более равномерного распределения кремния в жидком объеме расплава.

Использование в качестве вводимых в расплав электролизера мелких и пылевидных фракций кристаллического кремния отходов производства кристаллического кремния позволяет осуществлять переработку таких отходов без дополнительных затрат.

Ввод железных контейнеров с кристаллическим кремнием в зоны с наибольшей интенсивностью циркуляции расплава способствует полному и наиболее быстрому по времени растворению легирующих компонентов в расплавленном металле. Одной из таких зон является зона возле входящих анодных стояков электролизера.

Способ получения алюминиевых сплавов для прокатки фольги осуществляется следующим образом. Определяется группа электролизных ванн. Повышают напряжение (на 0,2-0,3 В), что приводит к повышению температуры электролита до 955-960°С и металла 890-900°С. Необходимое по расчету количество компонентов вводится в специально приготовленные «окна» в корке электролизной ванны при помощи железного контейнера. На электролизерах с обожженными анодами эту операцию можно провести при замене анодов в районе входящих анодных стояков ошиновки электролизера.

В расплав на подину электролизной ванны вводится контейнер, изготовленный из железной трубы с отверстиями диаметром 50 мм, с размещенной внутри него легкоплавкой вставкой из алюминиевого листа толщиной 0,1 мм, наполненной мелкими и пылевидными отходами производства кристаллического кремния. За счет турбулентных потоков внутри электролизной ванны происходит быстрое растворение вставки. Частицы кремния не всплывают и не переходят в электролит, а растворяются непосредственно в металле. Содержание железа в алюминии повышается за счет растворения железной трубы в расплаве за определенный промежуток времени.

Численное отношение между содержанием легирующих элементов и их предельным количеством определяется в каждом конкретном случае. При превышении содержания примесей в условиях электролитического получения алюминия возможны различные варианты корректировки химического состава сплава.

Для подготовки алюминиевого сплава выбирается группа из 2-3 электролизеров. В качестве основы используют расплав первичного алюминия марки А7, получаемый в электролизерах для производства алюминия. Количество металла в электролизере - 6-6,5 т. Температура электролита перед вводом - 960-965°С.

В качестве легирующих компонентов используют мелкие и пылевидные отходы производства кристаллического кремния крупностью до 20 мм, получаемые при дроблении и транспортировках кристаллического кремния, и материал контейнера для ввода кристаллического кремния в расплав. Технологические режимы и параметры приготовления для каждого вида сплава выдерживаются постоянными. После замера уровня металла производится отбор проб металла для определения химического состава. Расчет необходимого количества железа и кремния производится в расчете на 1 т алюминия после замера уровня металла и отбора проб метала с учетом исходного содержания элементов и количества нарабатываемого металла. На подготовку алюминиевого сплава затрачивается 60 мин. Поэтому при расчете количества легирующих компонентов учитывается количество металла, которое нарабатывается на электролизере за час - М/24, где М - производительность электролизера (ванна - сутки).

Технология введения легирующих компонентов во всех случаях идентична. После расчета производится взвешивание легирующих компонентов на каждый электролизер и ввод контейнеров в шахту электролизера. Время растворения одного контейнера в расплаве составляет 15-20 мин. После ввода последнего контейнера через 15 мин осуществляется отбор проб металла.

Металл в количестве 1 т забирается вакуумным ковшом емкостью 3 т из каждого электролизера, после производится отбор пробы металла. Далее металл направляется в литейное отделение. Окончательная обработка, очистка от газовых, неметаллических включений и модифицирование алюминиевых сплавов для производства фольги проводится в раздаточных литейных миксерах и в специальных емкостях для рафинирования и модифицирования проточного типа непосредственно перед процессом литья.

Механические испытания образцов алюминиевых сплавов для прокатки фольги показали высокие прочностные и пластические характеристики фольговых заготовок при низких показателях анизотропии свойств. Значение физико-механических характеристик для заготовки толщиной 7 мм и фольги толщиной 0,1 мм приведены в таблице.

Таблица
Марка сплаваВид способ получения алюминиевых сплавов для прокатки фольги, патент № 2418084 в, МПа способ получения алюминиевых сплавов для прокатки фольги, патент № 2418084 0,2, МПа способ получения алюминиевых сплавов для прокатки фольги, патент № 2418084 , %µ 21, способ получения алюминиевых сплавов для прокатки фольги, патент № 2418084 =0°µ 1, способ получения алюминиевых сплавов для прокатки фольги, патент № 2418084 =45° µ12, способ получения алюминиевых сплавов для прокатки фольги, патент № 2418084 =90°
8011Заготовка 89 6214 0,3350,342 0,347
8011Фольга 105 6518 0,3380,344 0,354
8079Заготовка 97 6914 0,3390,343 0.351
8079Фольга 123 6716 0,2980,321 0,319
8006Заготовка 105 6112 0,3440,352 0,361
8006Фольга 142 6813 0,3510,363 0,358

Таким образом, использование предлагаемого способа для приготовления алюминиевых сплавов для прокатки фольги в электролизере позволит значительно повысить эффективность получения алюминиевых сплавов для прокатки фольги и без дополнительных затрат на модифицирование, дополнительное легирование и последующий переплав в печи получать сплавы с высокими физико-механическими характеристиками, которые превышают аналогичные показатели для сплавов, полученных по традиционной технологии, - по пределу прочности на 24-28%; - по относительному удлинению в 1,3 раза.

Класс C22C1/02 плавлением 

алюминиевая лента с высоким содержанием марганца и магния -  патент 2522242 (10.07.2014)
способ получения сплавов на основе титана -  патент 2515411 (10.05.2014)
медный сплав и способ получения медного сплава -  патент 2510420 (27.03.2014)
способ получения сплава на основе кобальта для металлокерамических и бюгельных зубных протезов -  патент 2509816 (20.03.2014)
способ упрочнения легких сплавов -  патент 2487186 (10.07.2013)
способ получения титаноалюминиевого сплава из оксидного титансодержащего материала -  патент 2485194 (20.06.2013)
способ получения лигатуры алюминий-цирконий (варианты) -  патент 2482209 (20.05.2013)
способ получения лигатуры алюминий-титан (варианты) -  патент 2477759 (20.03.2013)
способ получения литейных жаропрочных сплавов на никелевой основе -  патент 2470081 (20.12.2012)
способ выплавки безуглеродистой жаропрочной стали -  патент 2469117 (10.12.2012)

Класс C25C3/06 алюминия

способ обжига подины алюминиевого электролизера с обожженными анодами -  патент 2526351 (20.08.2014)
устройство для сбора твердых отходов, имеющихся в электролизном расплаве и жидком металле электролизной ванны, предназначенной для производства алюминия, посредством выскабливания днища ванны -  патент 2522411 (10.07.2014)
улучшение выливки алюминия приложением целенаправленного электромагнитного поля -  патент 2522053 (10.07.2014)
композиция для материала смачиваемого покрытия катода алюминиевого электролизера -  патент 2518032 (10.06.2014)
способ защиты катодных блоков со смачиваемым покрытием на основе диборида титана при обжиге электролизера -  патент 2502832 (27.12.2013)
составной токоотводящий стержень -  патент 2494174 (27.09.2013)
способ создания смачиваемого покрытия углеродной подины алюминиевого электролизера -  патент 2486292 (27.06.2013)
способ определения концентрации глинозема в криолит-глиноземном расплаве -  патент 2467095 (20.11.2012)
способ электролиза расплавленных солей с кислородсодержащими добавками с использованием инертного анода -  патент 2457286 (27.07.2012)
электролизер для производства алюминия -  патент 2457285 (27.07.2012)
Наверх