способ термической обработки деталей автосцепки

Классы МПК:C21D1/42 индукционный нагрев 
C21D1/78 комбинированные способы термообработки, не предусмотренные в предыдущих рубриках 
C21D1/18 закалка; закалка быстрым охлаждением с последующим отпуском или без него
B23P6/00 Восстановление или ремонт изделий
Автор(ы):
Патентообладатель(и):Открытое акционерное общество "Российские железные дороги" (RU)
Приоритеты:
подача заявки:
2009-12-24
публикация патента:

Изобретение относится к металлургической промышленности, в частности к термической обработке литых стальных деталей, а именно деталей автосцепки, применяемой для автоматического сцепления железнодорожного подвижного состава. Способ термической обработки деталей автосцепки включает индукционный нагрев хвостовика корпуса автосцепки и последующее охлаждение корпуса автосцепки. Индукционный нагрев хвостовика корпуса автосцепки осуществляют при температуре 890-940°С в течение 5-30 минут. Охлаждение корпуса автосцепки осуществляют потоком воды, циркулирующей по замкнутому контуру, в течение 0,4-2,5 минут. Заявленное техническое решение позволяет повысить твердость и циклическую долговечность материала деталей автосцепки, в частности хвостовика автосцепки. 1 табл., 1 ил.

способ термической обработки деталей автосцепки, патент № 2415182

Формула изобретения

Способ восстановления корпуса автосцепки железнодорожного состава, включающий наплавку изношенных поверхностей, индукционный нагрев хвостовика корпуса автосцепки при температуре 890-940°С в течение 5-30 мин и охлаждение корпуса автосцепки потоком воды, циркулирующим по замкнутому контуру, в течение 0,4-2,5 мин.

Описание изобретения к патенту

Изобретение относится к металлургической промышленности, в частности к термической обработке литых стальных деталей, а именно деталей автосцепки, применяемой для автоматического сцепления железнодорожного подвижного состава.

Автосцепка (автосцепное устройство) представляет собой устройство для автоматического сцепления железнодорожного подвижного состава, передачи и смягчения действия продольных усилий, развиваемых при движении и остановке поезда, а также при маневровой работе. Обеспечивает автоматическое сцепление подвижного состава при соударении, автоматическое возвращение деталей механизма в положение готовности к сцеплению после разведения подвижного состава и возможность работы "на буфер", когда при соударении автосцепки их сцепления не требуется. Одним из элементов (деталей) автосцепки является корпус автосцепки, который предназначен для передачи ударно-тяговых усилий упряжному устройству и для размещения механизма, вместе с которым осуществляется сцепление и расцепление вагонов. Корпус автосцепки представляет собой пустотелую фасонную отливку, состоящую из головной части и хвостовика. Внутри головной части размещаются детали механизма автосцепки.

В настоящее время в вагоноремонтных депо после плановых видов ремонта, связанных с наплавкой, применяется способ термической обработки деталей автосцепки, который предусматривает печной нагрев корпуса автосцепки целиком до температуры 930°С в течение 2 часов и его последующее охлаждение на воздухе. Для указанной термообработки используется шахтная печь. Основным недостатком существующего способа является получение низкой твердости хвостовой части корпуса автосцепки (130-150 НВ), которая не соответствует требованиям СТО РЖД 1.05.003-2006 «Детали литые автосцепного устройства подвижного состава железных дорог общего пользования».

Известен также способ термической обработки литых деталей из низкоуглеродистых и низколегированных сталей, применяемых в автосцепках железнодорожного подвижного состава (Патент РФ № 2100451 Cl, C21D 1/56, опубл. 27.12.1997), включающий нагрев и последующее охлаждение потоком воды, по меньшей мере, части корпуса автосцепки. В данном способе нагрев деталей осуществляют в печи до температуры 950°С, а охлаждение - потоком воды, находящимся под избыточным давлением 0,1-0,2 МПа и движущимся с определенной скоростью.

Недостатками данного способа являются использование печного нагрева до температуры 950°С, что приводит к росту зерен и снижению характеристик ударной вязкости и пластичности стали, а также отсутствие ограничения по времени охлаждения детали, что может привести к значительному повышению твердости и снижению хрупкой прочности.

Техническим результатом заявленного изобретения является повышение твердости и циклической долговечности материала деталей автосцепки, в частности хвостовика автосцепки.

Указанный технический результат достигается тем, что способ восстановления корпуса автосцепки железнодорожного состава включает наплавку изношенных поверхностей, индукционный нагрев хвостовика корпуса автосцепки при температуре 890-940°С в течение 5-30 минут и охлаждение корпуса автосцепки потоком воды, циркулирующим по замкнутому контуру, в течение 0,4-2,5 минут.

Осуществление индукционного нагрева только хвостовой части (хвостовика) корпуса автосцепки при температуре 890-940°С в течение 5-30 минут и дальнейшее охлаждение корпуса автосцепки потоком воды, циркулирующей по замкнутому контуру, в течение 0,4-2,5 минут позволяет повысить твердость материала хвостовика автосцепки до 192 - 262 НВ, что соответствует нормативным требованиям, а также повысить циклическую долговечность в 1,4 раза по сравнению с известными способами термической обработки.

Выбор интервала температуры (890-940°С) индукционного нагрева хвостовика корпуса автосцепки обусловлен тем, что при температуре ниже 890°С в исходной структуре стального материала остаются участки избыточного феррита, что приведет к снижению твердости после термической обработки ниже нормативных требований. При индукционном нагреве свыше 940°С происходит рост зерна аустенита и ухудшение характеристик пластичности.

Время индукционного нагрева составляет 5-30 минут и зависит от мощности используемой установки, определяемой возможностями силовой подстанции депо. При индукционном нагреве менее 5 мин автосцепка не достигает требуемой температуры 890°С, что приводит к сохранению участков избыточного феррита и низкой твердости после закалки, а более 30 мин происходит рост зерна аустенита и уменьшение пластичности и ударной вязкости.

Охлаждение корпуса автосцепки осуществляют потоком воды, циркулирующей по замкнутому контуру, в течение 0,4-2,5 минут. При охлаждении потоком воды менее 0,4 мин происходит отпуск поверхностного упрочненного слоя металла за счет тепла глубинных слоев и снижается его твердость, при охлаждении более 2,5 мин металл приобретает повышенную твердость, что в процессе дальнейшей эксплуатации автосцепки может привести к образованию трещин в хвостовике автосцепки.

На чертеже схематично показано оборудование для осуществления термической обработки деталей автосцепки.

Оборудование для реализации заявленного способа термической обработки деталей автосцепки может состоять из индуктора 1 для нагрева хвостовика автосцепки, источника питания 2, например УИН622-200/Р, закалочного бака 3, закалочного устройства 4, блока согласующих трансформаторов 5, насоса 6.

Способ восстановления корпуса автосцепки железнодорожного состава, включающий термическую обработку одной из ее деталей, а именно корпуса автосцепки, осуществляется следующим образом.

Термическая обработка корпуса автосцепки осуществляется на сети железных дорог, в основном, после плановых видов ремонта автосцепки, включающих наплавку перемычки и восстановление изношенных поверхностей от балочки, заварку трещин и поверхностных дефектов, восстановление перемычки методом электрошлакового переплава. После ремонта корпуса автосцепки осуществляют индукционный нагрев хвостовика корпуса автосцепки устройства в индукторе 1 при температуре 890-940°С в течение 5-30 минут. После этого корпус автосцепки из индуктора 1 переносят в закалочный бак 3. Далее с помощью закалочного устройства 4 осуществляют охлаждение корпуса автосцепки потоком воды, циркулирующим по замкнутому контуру, в течение 0,4-2,5 мин. После окончательного остывания корпуса автосцепки производят контроль твердости материала на предварительно зачищенных участках хвостовика автосцепки на соответствие требованиям СТО РЖД 1.05.003-2006.

В табл.1 приведены примеры осуществления различных режимов термообработки деталей автосцепки.

Табл.1


п/п
Температура

индукционного

нагрева

хвостовика, °С
Время индукционного нагрева хвостовика, мин Время охлаждения корпуса автосцепки потоком воды, мин Качество хвостовика автосцепки, полученного после термической обработки
1885 151 Наличие в структуре избыточного феррита из-за недогрева, снижение твердости и прочностных свойств
2915 101,5 Получение требуемой твердости 192-262 НВ, необходимого уровня прочностных свойств и структуры троостита
3945 62 Рост зерна и снижение ударной вязкости и пластичности
4 88515 1Наличие в структуре избыточного феррита из-за недогрева, снижение твердости и прочностных свойств
5915 41,5 Наличие в структуре избыточного феррита, снижение твердости и прочностных свойств
6945 62 Рост зерна и снижение ударной вязкости и пластичности
7 88515 1Наличие в структуре избыточного феррита из-за недогрева, снижение твердости и прочностных свойств
8915 103 Получение твердости, превышающей требуемые значения 192-262 НВ, снижение характеристик пластичности и ударной вязкости
9 9456 2Рост зерна и снижение ударной вязкости и пластичности
10895 121,2 Получение требуемой твердости 192 - 262 НВ, необходимого уровня прочностных свойств и структуры троостита

Из приведенных выше примеров следует, что для получения качественных деталей автосцепки (в частности, хвостовиков) необходимо при проведении термической обработки использовать заявленные режимы ( № 2, 10 в табл.1), поскольку выход за любые указанные режимы ( № 1, 3-9 в табл.1) при проведении термической обработки приводит к получению деталей автосцепки, обладающих существенными недостатками и физико-химические параметры материала которых не соответствуют требованиям нормативных документов РЖД.

Таким образом, заявленный способ позволяет упрочнить детали автосцепки и повысить срок эксплуатации всего автосцепного устройства.

Класс C21D1/42 индукционный нагрев 

способ термомеханической обработки -  патент 2519343 (10.06.2014)
способ термообработки оправок трубопрокатных станов -  патент 2511452 (10.04.2014)
нагревательное устройство, устройство для термообработки и способ нагрева -  патент 2510996 (10.04.2014)
стенд для закалки валов и трубных деталей -  патент 2499058 (20.11.2013)
способ закалки колец подшипника качения и подшипник качения -  патент 2493269 (20.09.2013)
способ термической обработки изделий типа штоков -  патент 2491355 (27.08.2013)
способ и установка термической обработки рельсов -  патент 2487177 (10.07.2013)
способ и установка термической обработки рельсов -  патент 2484148 (10.06.2013)
устройство для поверхностной закалки кольца подшипника -  патент 2477757 (20.03.2013)
электроконтактная установка термической обработки и правки растяжением труб, прутков и профилей -  патент 2453613 (20.06.2012)

Класс C21D1/78 комбинированные способы термообработки, не предусмотренные в предыдущих рубриках 

способ подготовки структуры стали к дальнейшей термической обработке -  патент 2526341 (20.08.2014)
способ термической обработки отливок из коррозионностойкой стали мартенситного класса -  патент 2526107 (20.08.2014)
способ производства деталей из стальных отливок -  патент 2509162 (10.03.2014)
способ термической обработки конструкционных сталей на высокопрочное состояние -  патент 2506320 (10.02.2014)
закаленная мартенситная сталь с низким содержанием кобальта, способ получения детали из этой стали и деталь, полученная этим способом -  патент 2497974 (10.11.2013)
способ изготовления инструментального композиционного материала -  патент 2483123 (27.05.2013)
способ термической обработки стали -  патент 2481406 (10.05.2013)
лист электротехнической стали с ориентированной зеренной структурой и способ его изготовления -  патент 2480535 (27.04.2013)
способ упрочнения плунжерных пар топливных насосов дизельных двигателей -  патент 2463358 (10.10.2012)
способ обработки поверхностей стальных деталей -  патент 2462517 (27.09.2012)

Класс C21D1/18 закалка; закалка быстрым охлаждением с последующим отпуском или без него

способ комплексной термической обработки стали -  патент 2503726 (10.01.2014)
способ термической обработки стали -  патент 2502809 (27.12.2013)
способ и установка термической обработки рельсов -  патент 2487177 (10.07.2013)
способ и установка термической обработки рельсов -  патент 2484148 (10.06.2013)
способ термомеханического придания формы конечному продукту с очень высокой прочностью и полученный таким образом продукт -  патент 2469102 (10.12.2012)
способ закалки пружинных клемм и установка для его осуществления -  патент 2459877 (27.08.2012)
способ термической обработки деталей из конструкционной стали пониженной и регламентированной прокаливаемости -  патент 2450060 (10.05.2012)
способ и устройство для микрообработки сплава на основе железа и материал, полученный на его основе -  патент 2415951 (10.04.2011)
инструмент для удаления внутреннего грата и способ его термической обработки -  патент 2410223 (27.01.2011)
способ получения стальной детали с многофазной микроструктурой -  патент 2403291 (10.11.2010)

Класс B23P6/00 Восстановление или ремонт изделий

способ упрочнения рабочего органа почвообрабатывающей машины -  патент 2529610 (27.09.2014)
способ ремонта полых валков центробежной машины для получения минеральной ваты -  патент 2529147 (27.09.2014)
способ упрочняющего восстановления стрельчатых лап культиваторов различного назначения -  патент 2527558 (10.09.2014)
способ восстановления лопатки турбины, снабженной по меньшей мере одной платформой -  патент 2527509 (10.09.2014)
способ восстановления изношенных поверхностей металлических деталей -  патент 2524470 (27.07.2014)
способ и устройство для обработки уплотнительной поверхности запорной арматуры -  патент 2521569 (27.06.2014)
способ восстановления лемехов плугов -  патент 2520875 (27.06.2014)
способ ремонта диска вентиляторного ротора турбореактивного двигателя, вентиляторный ротор турбореактивного двигателя и турбореактивный двигатель -  патент 2519707 (20.06.2014)
способ задержки развития дефектов в конструкциях и устройство "токмач" для его осуществления -  патент 2519386 (10.06.2014)
способ восстановления и упрочнения стальных рабочих лопаток влажнопаровых ступеней паровой турбины -  патент 2518036 (10.06.2014)
Наверх