Поиск патентов
ПАТЕНТНЫЙ ПОИСК В РФ

способ получения фотокатализатора на основе нанокристаллического диоксида титана

Классы МПК:B01J37/34 облучение или применение электрической, магнитной или волновой энергии или применение этих видов энергии, например ультразвуковых колебаний
B01J21/06 кремний, титан, цирконий или гафний; их оксиды или гидроксиды
C02F1/30 облучением
B82B3/00 Изготовление или обработка наноструктур
B01J37/08 термообработка
C01G23/053 получение мокрыми способами, например гидролизом солей титана
B01D53/86 каталитические способы
Автор(ы):, , , , ,
Патентообладатель(и):Федеральное государственное образовательное учреждение высшего профессионального образования Санкт-Петербургский государственный университет (RU)
Приоритеты:
подача заявки:
2009-07-20
публикация патента:

Изобретение относится к способам получения фотокатализаторов. Описан способ получения фотокатализатора на основе нанокристаллического диоксида титана, заключающийся в приготовлении водного раствора сульфата титанила с концентрацией 0,1-1,0 моль/л, добавлении в раствор кислоты до получения концентрации 0,15-1 моль/л с последующим гидролизом полученного раствора в гидротермальных условиях с одновременной обработкой раствора микроволновым излучением при температуре в диапазоне 100-250°С в течение 0,5-24 часов и последующим высушиванием полученной суспензии пористого диоксида титана. Технический результат - вышеописанный способ позволяет получить пористый фотокатализатор в форме мезопористых частиц с высокой удельной поверхностью, что усиливает его фотокаталитическую активность. 5 з.п. ф-лы., 4 табл., 2 ил. способ получения фотокатализатора на основе нанокристаллического   диоксида титана, патент № 2408428

Рисунки к патенту РФ 2408428

способ получения фотокатализатора на основе нанокристаллического   диоксида титана, патент № 2408428 способ получения фотокатализатора на основе нанокристаллического   диоксида титана, патент № 2408428

Изобретение относится к составу и структуре дисперсных материалов на основе диоксида титана, а также к способам и составам полупродуктов для получения этих материалов, которые могут быть использованы как катализаторы фотохимических реакций на химических предприятиях, в частности, для получения молекулярного водорода как топлива для транспортных средств, для очистки воздуха и воды от вредных органических соединений путем гетерогенного фотокаталитического окисления упомянутых соединений до образования безопасных для здоровья человека продуктов.

Известно [1], что наибольшей каталитической активностью обладают фотокатализаторы, состоящие из кристаллических частиц с высокой удельной поверхностью (малым размером).

Известен способ получения диоксида титана гидролизом TiOSO4 [2-4]. Этот способ приводит к получению непористых частиц размером от 300 нм до 8.5 мкм, непригодных для использования в качестве фотокатализаторов.

Известен способ получения частиц ТiO2 размером менее 100 нм для фотокаталитических процессов из алкоксидов титана [5-6]. Однако их получение представляет собой отдельную задачу, а хранение требует специальных условий. Кроме того, содержание кристаллической фазы в полученном продукте составляет около 50%, что приводит к потере фотокаталитической активности.

Известен способ получения золя на основе TiO2 [7] гидролизом TiOSO4. Этот метод заключается в гидролизе TiOSO4 с помощью 10-200 моль воды в расчете на моль TiOSO4, добавлении кислоты до pH 0.1-2.5, выращивании кристаллов TiO2 в гидротермальных условиях при 80-210°C в течение 1-48 часов, добавлении нелетучего органического растворителя и удалении воды с помощью насадки Дина-Старка. Этот способ был выбран в качестве прототипа.

Недостатком прототипа является получение частиц оксида титана размером 80-200 нм, что не позволяет существенно повысить фотокаталитическую активность по сравнению с традиционными фотокатализаторами на основе диоксида титана.

Заявленное изобретение позволяет понизить размер получаемых частиц до 10-60 нм без потери кристалличности, таким образом, удается получить более эффективный фотокатализатор.

Указанный технический результат достигается тем, что фотокатализатор на основе нанокристаллического диоксида титана приготавливают из водного раствора сульфата титанила, который подвергают гидротермальной обработке, при этом концентрация сульфата титанила в водном растворе составляет 0,1-1,0 моль/л, в раствор добавляют кислоту до получения концентрации 0,15-1 моль/л, раствор подвергают гидролизу в гидротермальных условиях с одновременной обработкой раствора микроволновым излучением при температуре в диапазоне 100-250°C в течение 0,5-24 часов, после чего полученную суспензию пористого диоксида титана высушивают.

Кроме этого, указанный технический результат достигается тем, что в качестве кислоты используют раствор серной кислоты.

Помимо этого, указанный технический результат достигается тем, что пористый диоксид титана выделяют центрифугированием.

Кроме этого, пористый диоксид титана очищают от маточного раствора с помощью дистиллированной воды.

Помимо этого, указанный технический результат достигается тем, что пористый диоксид титана высушивают на воздухе при 60-70°.

Вместе с тем, указанный технический результат достигается тем, что обработку раствора микроволновым излучением проводят мощностью от 500 до 2000 Вт.

Указанный технический результат достигается, таким образом, тем, что диоксид титана получается гидролизом подкисленного раствора сульфата титанила в гидротермальных условиях при обработке микроволновым излучением.

Кроме того, повышение фотокаталитической активности получаемого материала достигается за счет увеличения площади поверхности, вызванного образованием в условиях получения пор размером 1-4 нм.

Ниже приведены примеры конкретной реализации заявленного изобретения на основе проведенных на базе Санкт-Петербургского государственного университета исследований.

Пример 1

Получение нанокристаллического оксида титана из раствора сульфата титанила, стабилизированного добавкой серной кислоты

Раствор TiOSO4 (1 M) был приготовлен растворением сульфата титанила в дистиллированной воде с добавлением значительного количества серной кислоты (4 М). Серная кислота оказывает на растворы сульфата титанила стабилизирующее действие - они становятся более устойчивыми, и в течение продолжительного времени из них не выпадает осадок гидратированного диоксида титана. Раствор разбавляли дистиллированной водой до заданных концентраций и подвергали гидротермально-микроволновой обработке мощностью 1400 Вт при 200°C в течение 1 часа. По окончании эксперимента продукты синтеза извлекали из ячеек, промывали дистиллированной водой, после чего высушивали на воздухе при температуре 60°C.

По данным РФА все образцы, полученные гидротермально-микроволновым методом из 0,5 М растворов TiOSO4: 1) стабилизированного H2SO4 и 2) нестабилизированного, представляют собой чистую фазу анатаза (Фиг.1) с небольшой примесью аморфной фазы. Таким образом, дополнительное микроволновое воздействие не оказывает влияния на фазовый состав образующегося в гидротермальных условиях диоксида титана. Согласно результатам измерений размеров ОКР при синтезе диоксида титана из раствора, предварительно стабилизированного серной кислотой, увеличение концентрации сульфата титанила в растворе от 0,25 М до 0,5 М приводит к увеличению размеров ОКР от 17 до 21 нм (табл. 1).

Данные просвечивающей электронной микроскопии (Фиг.2) свидетельствуют о получении в гидротермально-микроволновых условиях пористого нанокристаллического диоксида титана с размером частиц от 15 до 20 нм и размерами пор 1-2 нм. По данным измерения низкотемпературной адсорбции азота все образцы имеют удельную площадь поверхности более 100 м2/г, что хорошо согласуется с указанным размером частиц.

Таблица 1
Описание образца Размер ОКР, нм (±10%)
Стабилизированный раствор 0,5 М 21
Стабилизированный раствор 0,25 М16

Приведенные результаты показывают, что гидротермально-микроволновой синтез позволяет значительно понизить предложенное в прототипе время обработки (до 48 часов) и одновременно уменьшить размер частиц диоксида титана.

Пример 2

Получение нанокристаллического оксида титана из раствора сульфата титанила без стабилизации серной кислотой

Раствор TiOSO4 (1 M) был приготовлен растворением сульфата титанила в дистиллированной воде. Раствор разбавляли дистиллированной водой до заданных концентраций и подвергали гидротермально-микроволновой обработке мощностью 1400 Вт при 200°C в течение 1 ч. По окончании эксперимента продукты синтеза извлекали из ячеек, промывали дистиллированной водой, после чего высушивали на воздухе при температуре 60°C.

По данным РФА все образцы, полученные гидротермально-микроволновым методом, представляют собой чистую фазу анатаза (Фиг.1) с небольшой примесью аморфной фазы. Согласно результатам измерений размеров ОКР при синтезе диоксида титана из раствора, не стабилизированного серной кислотой, увеличение концентрации сульфата титанила в растворе от 0,25 М до 0,5 М приводит к увеличению размеров ОКР от 12 до 16 нм (табл. 2).

Данные просвечивающей электронной микроскопии свидетельствуют о получении в гидротермально-микроволновых условиях пористого нанокристаллического диоксида титана с размером частиц от 8 до 15 нм и размерами пор 1-2 нм. По данным измерения низкотемпературной адсорбции азота все образцы имеют удельную площадь поверхности более 100 м2/г, что хорошо согласуется с указанным размером частиц.

Таблица 2
Описание образца Размер ОКР, нм (± 10%)
Нестабилизированный раствор 0,5 М 16
Нестабилизированный раствор 0,25 М12

Пример 3

Получение пористого оксида титана из нестабилизированного раствора сульфата титанила при различных временах гидротермальной обработки

Раствор TiOSO4 (1 M) был приготовлен растворением сульфата титанила в дистиллированной воде. Раствор разбавляли дистиллированной водой до концентрации 0,25 моль/л и подвергали гидротермально-микроволновой обработке мощностью 500 Вт при 200°C в течение 0,5-6 ч. По окончании эксперимента продукты синтеза извлекали из ячеек, промывали дистиллированной водой, после чего высушивали на воздухе при температуре 60°C.

По данным РФА все образцы, полученные гидротермально-микроволновым методом, представляют собой чистую фазу анатаза с небольшой примесью аморфной фазы (табл. 3).

Данные просвечивающей электронной микроскопии свидетельствуют о получении в гидротермально-микроволновых условиях пористого нанокристаллического диоксида титана с размером частиц от 8 до 15 нм и размерами пор 1-2 нм. По данным измерения низкотемпературной адсорбции азота все образцы имеют удельную площадь поверхности более 100 м2/г, что хорошо согласуется с указанным размером частиц.

Таблица 3
Описание образца Время гидротермальной обработки, ч Фазовый составРазмер ОКР, нм (±10%)
Нестабилизированный раствор 0,25 М 0,5Анатаз - 100% 11
Нестабилизированный раствор 0,25 М 1Анатаз - 100% 12
Нестабилизированный раствор 0,25 М 3Анатаз - 100% 14
Нестабилизированный раствор 0,25 М 6Анатаз - 100% 15

Пример 4

Получение пористого оксида титана из нестабилизированного раствора сульфата титанила с добавлением азотной кислоты при различных температурах гидротермальной обработки

Раствор TiOSO4 (1 M) был приготовлен растворением сульфата титанила в дистиллированной воде. Раствор разбавляли дистиллированной водой до концентрации 0,25 моль/л и подвергали гидротермально-микроволновой обработке мощностью 2000 Вт при 100-250°C в течение 1 (табл. 4). По окончании эксперимента продукты синтеза извлекали из ячеек, промывали дистиллированной водой, после чего высушивали на воздухе при температуре 60°C.

По данным РФА все образцы, полученные гидротермально-микроволновым методом, представляют собой чистую фазу анатаза с небольшой примесью аморфной фазы.

Данные просвечивающей электронной микроскопии свидетельствуют о получении в гидротермально-микроволновых условиях пористого нанокристаллического диоксида титана с размером частиц от 8 до 15 нм и размерами пор 1-2 нм. По данным измерения низкотемпературной адсорбции азота все образцы имеют удельную площадь поверхности более 100 м2/г, что хорошо согласуется с указанным размером частиц.

Таблица 4
Описание образца Температура гидротермальной обработки Фазовый составРазмер ОКР, нм (±10%)
Нестабилизированный раствор 0,25 М 100Анатаз - 100% 11
Нестабилизированный раствор 0,25 М 200Анатаз - 100% 12
Нестабилизированный раствор 0,25 М 250Анатаз - 100% 15

На основании проведенных исследований приведенные выше примеры наглядно подтверждают возможность получения предложенным методом нанокристаллического оксида титана существенно меньшего размера (10-25 нм), чем другими способами, причем практически все частицы являются полностью закристаллизованными. Это приводит к тому, что увеличивается удельная площадь поверхности материала, что усиливает его фотокаталитическую активность. Кроме того, диоксид титана образуется в форме мезопористых частиц, что дополнительно увеличивает доступную для катализа площадь поверхности.

Заявленное изобретение позволяет увеличить эффективность очистки воды и воздуха от органических загрязнителей, эффективно проводить обеззараживание воздуха в медицинских учреждениях, проводить фотокаталитическое разложение воды с целью получения молекулярного водорода и его дальнейшего использования в роли топлива. Кроме того, мезопористость полученного материала позволяет использование его и в других областях промышленности, например для получения белого пигмента в красках, пластмассах, в целлюлозно-бумажной, текстильной, пищевой промышленности, при обработке кожи, в фармацевтике, косметике.

Источники информации

1. М. Kaneko, I. Okura, Photocatalysis: Science and Technology. Springer, 2002, 356 p.

2. Патент Российской Федерации № 2315123.

3. Патент Российской Федерации № 2315818.

4. Патент Российской Федерации № 2317345.

5. Патент Российской Федерации № 2291839.

6. Патент Германии № 102006035755.

7. Патент Кореи № 20020043133 - прототип.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ получения фотокатализатора на основе нанокристаллического диоксида титана, заключающийся в приготовлении водного раствора сульфата титанила и его гидротермальной обработке, отличающийся тем, что концентрация сульфата титанила в водном растворе составляет 0,1-1,0 моль/л, в раствор добавляют кислоту до получения концентрации 0,15-1 моль/л, раствор подвергают гидролизу в гидротермальных условиях с одновременной обработкой раствора микроволновым излучением при температуре в диапазоне 100-250°С в течение 0,5-24 ч, после чего полученную суспензию пористого диоксида титана высушивают.

2. Способ по п.1, отличающийся тем, что в качестве кислоты используют раствор серной кислоты.

3. Способ по п.1, отличающийся тем, что пористый диоксид титана выделяют центрифугированием.

4. Способ по п.3, отличающийся тем, что пористый диоксид титана очищают от маточного раствора с помощью дистиллированной воды.

5. Способ по п.4, отличающийся тем, что пористый диоксид титана высушивают на воздухе при 60-70°С.

6. Способ по п.1, отличающийся тем, что обработку раствора микроволновым излучением проводят мощностью от 500 до 2000 Вт.


Скачать патент РФ Официальная публикация
патента РФ № 2408428

patent-2408428.pdf
Патентный поиск по классам МПК-8:

Класс B01J37/34 облучение или применение электрической, магнитной или волновой энергии или применение этих видов энергии, например ультразвуковых колебаний

Патенты РФ в классе B01J37/34:
способ получения нановискерных структур оксидных вольфрамовых бронз на угольном материале -  патент 2525543 (20.08.2014)
способ приготовления гетерогенного фталоцианинового катализатора для окисления серосодержащих соединений -  патент 2523459 (20.07.2014)
нагруженный металлом катализатор и способ его приготовления -  патент 2514438 (27.04.2014)
способ активации катализаторов гидроочистки дизельного топлива -  патент 2500475 (10.12.2013)
способ получения оксидных каталитически активных слоев на поверхности, выполненной из вентильного металла или его сплава -  патент 2500474 (10.12.2013)
способ модификации электрохимических катализаторов на углеродном носителе -  патент 2495158 (10.10.2013)
способ получения диоксида титана -  патент 2494045 (27.09.2013)
катализатор и способ получения алифатических углеводородов из оксида углерода и водорода в его присутствии -  патент 2492923 (20.09.2013)
способ получения катализатора гидроочистки дизельного топлива -  патент 2491123 (27.08.2013)
способ электрохимического получения катализатора pt-nio/c -  патент 2486958 (10.07.2013)

Класс B01J21/06 кремний, титан, цирконий или гафний; их оксиды или гидроксиды

Патенты РФ в классе B01J21/06:
способ получения этилена -  патент 2528830 (20.09.2014)
способ получения композиционных материалов на основе диоксида кремния -  патент 2528667 (20.09.2014)
способ получения высокооктанового автомобильного бензина -  патент 2524213 (27.07.2014)
способ приготовления титаноксидного фотокатализатора, активного в видимой области спектра -  патент 2520100 (20.06.2014)
композиция на основе оксидов циркония, церия и другого редкоземельного элемента при сниженной максимальной температуре восстанавливаемости, способ получения и применение в области катализа -  патент 2518969 (10.06.2014)
катализатор и способ синтеза олефинов из диметилового эфира в его присутствии -  патент 2518091 (10.06.2014)
фотокаталитические композиционные материалы, содержащие титан и известняк без диоксида титана -  патент 2516536 (20.05.2014)
катализатор очистки выхлопных газов и способ его изготовления -  патент 2515542 (10.05.2014)
способ приготовления катализатора для полного окисления углеводородов, катализатор, приготовленный по этому способу, и способ очистки воздуха от углеводородов с использованием полученного катализатора -  патент 2515510 (10.05.2014)
катализатор для получения бутадиена превращением этанола -  патент 2514425 (27.04.2014)

Класс C02F1/30 облучением

Класс B82B3/00 Изготовление или обработка наноструктур

Патенты РФ в классе B82B3/00:
способ комбинированной интенсивной пластической деформации заготовок -  патент 2529604 (27.09.2014)
многослойный композиционный материал для защиты от электромагнитного излучения -  патент 2529494 (27.09.2014)
способ функционализации углеродных наноматериалов -  патент 2529217 (27.09.2014)
нанокомпонентная энергетическая добавка и жидкое углеводородное топливо -  патент 2529035 (27.09.2014)
способ получения насыщенных карбоновых кислот -  патент 2529026 (27.09.2014)
способ получения катализатора для процесса метанирования -  патент 2528988 (20.09.2014)
способ модифицирования углеродных нанотрубок -  патент 2528985 (20.09.2014)
полимерный медьсодержащий композит и способ его получения -  патент 2528981 (20.09.2014)
композиции матриксных носителей, способы и применения -  патент 2528895 (20.09.2014)
полимерное электрохромное устройство -  патент 2528841 (20.09.2014)

Класс B01J37/08 термообработка

Патенты РФ в классе B01J37/08:
способ получения катализатора для процесса метанирования -  патент 2528988 (20.09.2014)
катализатор для процесса гидродепарафинизации и способ его получения -  патент 2527283 (27.08.2014)
способ приготовления катализатора и способ получения пероксида водорода -  патент 2526460 (20.08.2014)
катализатор для получения синтетических базовых масел и способ его приготовления -  патент 2525119 (10.08.2014)
способ активации молибден-цеолитного катализатора ароматизации метана -  патент 2525117 (10.08.2014)
способ получения каталитического покрытия для очистки газов -  патент 2522561 (20.07.2014)
способ получения катализатора полимеризации эпсилон-капролактама -  патент 2522540 (20.07.2014)
микросферический катализатор крекинга "октифайн" и способ его приготовления -  патент 2522438 (10.07.2014)
способ изготовления металл-углерод содержащих тел -  патент 2520874 (27.06.2014)
катализатор на подложке из оксида алюминия, с оболочкой из диоксида кремния -  патент 2520223 (20.06.2014)

Класс C01G23/053 получение мокрыми способами, например гидролизом солей титана

Патенты РФ в классе C01G23/053:
способ приготовления титаноксидного фотокатализатора, активного в видимой области спектра -  патент 2520100 (20.06.2014)
обогащенный титаном остаток ильменита, его применение и способ получения титанового пигмента -  патент 2518860 (10.06.2014)
дисперсия частиц оксида титана со структурой рутила, способ ее получения и ее применение -  патент 2513423 (20.04.2014)
способ получения нанопорошка сложного оксида циркония, иттрия и титана -  патент 2509727 (20.03.2014)
способ получения диоксида титана -  патент 2494045 (27.09.2013)
способ получения диоксида титана -  патент 2487836 (20.07.2013)
способ получения фотокаталитически активного диоксида титана -  патент 2486134 (27.06.2013)
способ получения диоксида титана -  патент 2472707 (20.01.2013)
способ получения наноразмерной -модификации диоксида титана -  патент 2469954 (20.12.2012)
способ получения адсорбента на основе наноразмерного диоксида титана со структурой анатаза -  патент 2463252 (10.10.2012)

Класс B01D53/86 каталитические способы

Патенты РФ в классе B01D53/86:
модульная установка очистки воздуха от газовых выбросов промышленных предприятий -  патент 2529218 (27.09.2014)
способ непрерывного удаления сернистого водорода из потока газа -  патент 2527991 (10.09.2014)
сотовый элемент с многоступенчатым нагревом -  патент 2525990 (20.08.2014)
металлический слой с антидиффузионными структурами и металлический сотовый элемент с по меньшей мере одним таким металлическим слоем -  патент 2523514 (20.07.2014)
способ очистки газа от сероводорода -  патент 2520554 (27.06.2014)
фольга из нержавеющей стали и носитель катализатора для устройства очистки выхлопного газа, использующий эту фольгу -  патент 2518873 (10.06.2014)
способ и каталитическая система для восстановления оксидов азота до азота в отработанном газе и применение каталитической системы -  патент 2516752 (20.05.2014)
способ приготовления катализатора для полного окисления углеводородов, катализатор, приготовленный по этому способу, и способ очистки воздуха от углеводородов с использованием полученного катализатора -  патент 2515510 (10.05.2014)
способ получения серы -  патент 2508247 (27.02.2014)
фильтр для улавливания твердых частиц с гидролизующим покрытием -  патент 2506987 (20.02.2014)

Наверх