Поиск патентов
ПАТЕНТНЫЙ ПОИСК В РФ

способ реактивации катализатора для дегидрирования парафиновых углеводородов c10-c13

Классы МПК:B01J23/92 катализаторов, содержащих металлы, оксиды или гидроксиды, отнесенные к рубрикам  23/02
B01J23/00 Катализаторы, содержащие металлы или их оксиды или гидроксиды, не отнесенные к группе  21/00
C07C5/333 каталитические способы
Автор(ы):, , , , , , ,
Патентообладатель(и):Общество с ограниченной ответственностью "Производственное объединение "Киришинефтеоргсинтез" (RU)
Приоритеты:
подача заявки:
2008-07-28
публикация патента:

Изобретение относится к области нефтепереработки, а именно к способам реактивации катализаторов для процесса дегидрирования высших парафинов (С1013) при снижении эффективности в процессе работы. Описан способ реактивации катализатора для процесса дегидрирования парафиновых углеводородов С1013, состоящего из платины, металлов-промоторов из группы индий и/или олово, и/или церий, и/или молибден, и легких металлов-модификаторов, например магний, кальций, калий, натрий, нанесенных на пористый огнеупорный носитель - активный оксид алюминия или алюмосиликат, в котором указанную реактивацию катализатора проводят в присутствии диоксида углерода в две стадии, сначала в смеси азот-воздух-СО2 с малой постоянной концентрацией СО2 около 0,003 об.% или с постепенно возрастающей концентрацией - от 0,0001 до 0,003 об.% а затем в атмосфере паровоздушной смеси с добавкой хлористого водорода и повышенной концентрацией СО2, но не превышающей 0,03 об.%. Технический результат - повышение селективности и стабильности работы катализатора.

Изобретение относится к области нефтепереработки, а именно к способам реактивации катализаторов процесса дегидрирования высших н-парафинов (С1013) для восстановления их эффективности в процессе эксплуатации.

Известны катализаторы для процесса дегидрирования высших парафинов, представляющие собой гидрирующий металл, преимущественно платину, нанесенную на носитель из активного оксида алюминия или алюмосиликата, с добавками различных промоторов и модификаторов и способы их приготовления и применения (US 5233118; 4827072; 4048245; 4046715; 4013733; 5536694; 55677260; 5849657). Известен также способ повышения эффективности и регенерируемости катализатора дегидрирования путем регулирования параметров пористой структуры [US 6417135].

В процессе эксплуатации катализаторы состава платина + промоторы + модификаторы на носителе постепенно теряют свою активность вследствие возрастания на их поверхности количества коксовых отложений, а также в результате уменьшения дисперсности платины. При снижении активности до уровня, после которого эксплуатация катализатора становится неэффективной, катализатор выгружают и заменяют на свежий без регенерации или реактивации. Такой подход применяется, например, в процессе дегидрирования компании «Пакол» (UOP, США), где используются катализаторы серии Deh (Тематический обзор. Серия «Нефтехимия и сланцепереработка». Платиновые промотированные катализаторы в процессах изомеризации и дегидрирования парафиновых углеводородов, М., 1981; US 5844162).

Удаление кокса с катализатора особых затруднений не вызывает и производится путем обычной термообработки в среде воздуха при повышенной температуре, как это делается, например, для катализаторов риформинга и аналогичных (Маслянский Г.Н., Шапиро Р.Н. Каталитический риформинг бензинов, Л., «Химия», 1985 - 224 с.; Р.Хьюз. Дезактивация катализаторов. М., Химия, 1989 - 180 с.; Буянов Р.А. Закоксование катализаторов. Новосибирск, Наука, 1983 - 206 с.). Однако кроме этой операции необходимо еще и редиспергировать платину (восстановить высокую дисперсность). Обычно эта задача решается путем обработки катализатора различными соединениями хлора. Образующиеся хлориды платины обладают подвижностью на поверхности носителя, что и обеспечивает возрастание дисперсности платины при подобной обработке. Известен ряд приемов хлорирования, применяемых для катализаторов риформинга и аналогичных, которые отличаются условиями и используемыми хлорагентами [US 5087792].

Известные способы мало пригодны для катализаторов дегидрирования, так как хлор, вводимый в состав катализатора с платиной на носителе, повышает кислотность последнего, а это резко снижает селективность и, как правило, стабильность его работы. Попытки же последующего понижения содержания хлора до приемлемого уровня (менее ~0,2 мас.%) с помощью обработки катализатора водяным паром недостаточно эффективны вследствие того, что значительная часть хлора в катализаторе присутствует в виде трудно удаляемых хлоридов легких металлов - модификаторов (магния и/или кальция, и/или натрия, и/или лития). Кроме того, такая обработка катализаторов дегидрирования приводит к уменьшению механической прочности, которая у весьма пористых катализаторов дегидрирования и без того находится на нижнем допустимом пределе для промышленной эксплуатации (Скарченко В.К. Дегидрирование углеводородов. - Киев, Наукова думка, 1981 - 328 с.; US 4486547).

Известен способ регенерации катализатора дегидрирования, содержащего платину и металлы-промоторы на огнеупорном носителе, путем выжига кокса в атмосфере газа, содержащего кислород и соединение хлора, причем высокая степень удаления кокса достигается путем выдерживания скорости подачи газа регенерации в строго определенных пределах (US 5672801). Недостатком этого способа является отсутствие операций диспергирования платины и удаления избыточного хлора, что приводит к пониженным уровням селективности и стабильности.

Известен способ рекондиционирования (реактивации) катализатора дегидрирования парафиновых углеводородов, включающий стадии выжига кокса, сушки катализатора и редиспергирования платины (US 5087792). Способ предполагает проведение быстрой сушки катализатора сразу после выжига кокса, что улучшает последующее диспергирование платины. Эффективность этой процедуры определяется деталями регулирования содержания соединений хлора в зоне реакции. Недостатком этого способа реактивации является относительно низкая селективность подвергнутого обработке катализатора.

Наиболее близким к предлагаемому способу реактивации катализатора дегидрирования является способ, описанный в Патенте Бразилии 8906073. Этот способ предусматривает рекондиционирование (реактивация) потерявшего активность катализатора дегидрирования путем многостадийной обработки в смеси газов, содержащей наряду с воздухом или азотом соединение хлора и водяной пар, причем на разных стадиях применяются различные соотношения этих компонентов, а также варьируются температура, длительность обработки и количество подаваемого газа. Способ обеспечивает достаточно полное удаление коксовых отложений и удовлетворительную степень редиспергирования платины, однако не позволяет регулировать содержание галогена (хлора) в катализаторе, что приводит к недостаточной селективности его работы в процессе дегидрирования высших парафинов.

Задачи, которые решены изобретением, заключаются в разработке способа реактивации катализатора, характеризующегося повышенной селективностью и стабильностью работы.

Поставленные задачи решены следующим образом. Реактивацию катализатора для дегидрирования парафиновых углеводородов С1013, состоящего из платины, металлов-промоторов из группы индий и/или олово, и/или церий, и/или молибден, и легких металлов-модификаторов (магний, кальций, калий, натрий), нанесенных на пористый огнеупорный носитель - активный оксид алюминия или алюмосиликат, проводят в присутствии диоксида углерода в две стадии. Сначала реактивацию выполняют в смеси азот-воздух-СО2 с малой постоянной концентрацией СО2 около 0,003 об.% или с постепенно возрастающей концентрацией - от 0,0001 до 0,003 об.% а затем в атмосфере паровоздушной смеси с добавкой хлористого водорода и относительно высокой концентрацией СО2, но не превышающей 0,03 об.%.

Повышение селективности и стабильности работы катализатора происходит за счет варьирования содержания диоксида углерода в газах, используемых в двухстадийном процессе активации катализатора, основной целью которой является, во-первых, удаление коксовых отложений и воды и, во-вторых, диспергирование платины с одновременной минимизацией кислотности носителя.

В изобретении предлагается реактивацию отработанного катализатора дегидрирования проводить с применением специальной операции путем обработки его парогазовой смесью в присутствии небольших количеств диоксида углерода. При этом на первой стадии активации, проводимой в смеси азота и воздуха, количество СО 2 в газовой смеси не превышает 0,003 об.%, а на второй стадии, протекающей в смеси воздуха с водяными парами и хлористым водородом, содержание СО2 повышают, но его концентрация ограничивается значением 0,03 об.%. На первой стадии концентрация диоксида углерода может быть как постоянной (около 0,003 об.%), так и возрастающей (от 0,0001 до 0,003 об.%), а на второй - постоянной (0,03 об.%).

После проведения реактивации катализатор восстанавливают известным способом в атмосфере водорода при температуре 500°С. В случае необходимости хранения перед использованием (испытанием) катализатор дополнительно пассивируют при температуре не выше 100°С в среде азота с небольшой добавкой воздуха (из расчета не выше 3 об.% кислорода).

Катализатор испытывают в пилотной установке в процессе дегидрирования н-додекана (С12) при температурах 460-490°С, давлении 2,0 атм, объемной скорости подачи сырья 20 час-1 (по жидкости) и мольном отношении водород:сырье = 8:1.

Полученный катализатор обеспечивает конверсию н-додекана или, что то же самое, активность на уровне 13-17% при селективности по н-моноолефинам до 95% и высокую стабильность работы, соответствующую рабочему циклу не менее 1800 часов. Активность реактивированного катализатора составляет не менее 80%, а стабильность превышает 50% от соответствующих показателей для свежего катализатора.

Изобретение поясняется примерами.

Пример 1.

Для испытания берут катализатор, отработанный в процессе дегидрирования высших парафинов С1013 (процесс «Пакол»).

Катализатор подвергают сушке при 120°С в течение 6 часов, а затем активируют путем прокаливания при 550°С в течение 5 часов в токе азота, в который постепенно дозируют воздух, начиная с концентрации 0,5 об.% в пересчете на кислород, а в конце процесса доводят до 10 об.% кислорода. Соответственно в начале процесса дозируют СО2 с концентрацией 0,0001 об.%, а в конце - с концентрацией 0,003 об.%.

По завершении указанной первой стадии обработки катализатор подвергают термообработке в среде воздуха, содержащего: водяной пар - 0,8 г/м3, хлористый водород - 1 г/м3, диоксид углерода - 0,03 об.%.

10 мл полученного катализатора загружают в реактор пилотной установки и проводят стандартное испытание в реакции дегидрирования н-додекана. Получают следующие результаты.

Конверсия н-додекана в интервале температур 460-490°С - от 7 до 16 мас.%, селективность по н-моноолефинам - от 81 до 95%. Стабильность соответствует длительности рабочего цикла 3600 часов.

Пример 2.

Берут катализатор по составу и физико-химическим характеристикам не отличающийся от катализатора примера 1, отработанный в процессе дегидрирования и содержащий 7 мас.% коксовых отложений.

Пробу катализатора подвергают операциям активации аналогично тому, как это описано в примере 1.

При проведении каталитического испытания реактивированного и восстановленного образца получают следующие результаты.

Конверсия н-додекана при 460-490°С - от 6 до 13%, селективность по н-моно-олефинам - от 76 до 92%. Стабильность - 2600 часов рабочего цикла.

Пример 3.

Аналогично примеру 2 берут дезактивированный катализатор дегидрирования с содержанием 5,3% кокса.

Пробу катализатора подвергают двухстадийной активации, как это описано в примерах 1 и 2, с тем исключением, что на первой стадии концентрация диоксида углерода постоянна и составляет 0,003 об.%.

При проведении каталитического испытания реактивированного и восстановленного образца получают следующие результаты.

Конверсия н-додекана при 460-490°С - от 8 до 17%, селективность по н-моноолефинам - от 77 до 91%. Стабильность - 2800 часов рабочего цикла.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ реактивации катализатора для процесса дегидрирования парафиновых углеводородов С1013, состоящего из платины, металлов-промоторов из группы индий и/или олово, и/или церий, и/или молибден, и легких металлов-модификаторов, например, магний, кальций, калий, натрий, нанесенных на пористый огнеупорный носитель - активный оксид алюминия или алюмосиликат, отличающийся тем, что указанную реактивацию катализатора проводят в присутствии диоксида углерода в две стадии, сначала в смеси азот-воздух-СО2 с малой постоянной концентрацией СО 2 около 0,003 об.% или с постепенно возрастающей концентрацией - от 0,0001 до 0,003 об.%, а затем в атмосфере паровоздушной смеси с добавкой хлористого водорода и повышенной концентрацией СО2, но не превышающей 0,03 об.%.


Скачать патент РФ Официальная публикация
патента РФ № 2400299

patent-2400299.pdf
Патентный поиск по классам МПК-8:

Класс B01J23/92 катализаторов, содержащих металлы, оксиды или гидроксиды, отнесенные к рубрикам  23/02

Патенты РФ в классе B01J23/92:
способ переработки отработанного молибден-алюминийсодержащего катализатора -  патент 2466199 (10.11.2012)
способ регенерации катализатора для обработки отходящего газа и катализатор для обработки отходящего газа, полученный этим способом -  патент 2436628 (20.12.2011)
способ осуществляемой на транспортном средстве регенерации термически состаренных накопительных каталитических нейтрализаторов оксидов азота в транспортных средствах с двигателем внутреннего сгорания, работающим преимущественно на обедненных смесях -  патент 2429355 (20.09.2011)
способ реактивации термически состарившихся каталитических нейтрализаторов-накопителей оксидов азота -  патент 2398632 (10.09.2010)
способ извлечения молибдена из продуктов каталитического эпоксидирования олефинов органическими гидропероксидами -  патент 2367609 (20.09.2009)
экстракционный способ удаления примесей из маточного раствора в синтезе карбоновой кислоты (варианты) -  патент 2347773 (27.02.2009)
экстракционный способ извлечения примесей из маточного раствора в синтезе карбоновой кислоты -  патент 2345980 (10.02.2009)
способ утилизации отработанного ртутьсодержащего катализатора -  патент 2285561 (20.10.2006)
новая фаза тригидроксида алюминия и изготовленные из нее катализаторы -  патент 2283284 (10.09.2006)
способ восстановления катализатора низкотемпературной конверсии монооксида углерода -  патент 2175574 (10.11.2001)

Класс B01J23/00 Катализаторы, содержащие металлы или их оксиды или гидроксиды, не отнесенные к группе  21/00

Патенты РФ в классе B01J23/00:
катализатор для окисления сернистых соединений -  патент 2529500 (27.09.2014)
способ получения тонкодисперсной жидкой формы фталоцианинового катализатора демеркаптанизации нефти и газоконденсата -  патент 2529492 (27.09.2014)
способ получения катализатора для процесса метанирования -  патент 2528988 (20.09.2014)
способ получения ультранизкосернистых дизельных фракций -  патент 2528986 (20.09.2014)
способ получения этилена -  патент 2528830 (20.09.2014)
способ получения этилена -  патент 2528829 (20.09.2014)
способ и устройство для изготовления частиц защищенного катализатора с помощью расплавленного органического вещества -  патент 2528424 (20.09.2014)
катализатор для переработки тяжелого нефтяного сырья и способ его приготовления -  патент 2527573 (10.09.2014)
способ приготовления катализатора и способ получения пероксида водорода -  патент 2526460 (20.08.2014)
каталитическая композиция и способ олигомеризации этилена -  патент 2525917 (20.08.2014)

Класс C07C5/333 каталитические способы

Патенты РФ в классе C07C5/333:
технологическая схема нового реактора дегидрирования пропана до пропилена -  патент 2523537 (20.07.2014)
катализатор на основе меди, нанесенный на мезопористый уголь, способ его получения и применения -  патент 2517108 (27.05.2014)
способ получения олефиновых углеводородов c3-c5 и катализатор для его осуществления -  патент 2514426 (27.04.2014)
способ получения дегидрированных углеводородных соединений -  патент 2508282 (27.02.2014)
способ определения устойчивости катализатора для дегидрирования алкилароматических углеводородов -  патент 2508163 (27.02.2014)
способ дегидрирования углеводородов -  патент 2505516 (27.01.2014)
катализатор для непрерывного окислительного дегидрирования этана и способ непрерывного окислительного дегидрирования этана с его использованием -  патент 2488440 (27.07.2013)
способ управления активностью катализатора процесса дегидрирования высших н-парафинов -  патент 2486168 (27.06.2013)
высокопористые пенокерамики как носители катализатора для дегидрирования алканов -  патент 2486007 (27.06.2013)
регенерация катализаторов дегидрирования алканов -  патент 2477265 (10.03.2013)

Наверх