способ упрочнения фотонно-кристаллических пленок на основе монодисперсных сферических частиц кремнезема

Классы МПК:C01B33/14 коллоидный диоксид кремния, например дисперсии, гели, золи
C01B33/18 получение тонкодисперсного диоксида кремния в форме иной, чем золь или гель; последующая обработка его
B82B1/00 Наноструктуры
Автор(ы):,
Патентообладатель(и):Учреждение Российской академии наук Институт геологии и минералогии им.В.С. Соболева Сибирского отделения РАН (Институт геологии и минералогии СО РАН, ИГМ СО РАН) (RU)
Приоритеты:
подача заявки:
2008-12-29
публикация патента:

Изобретение может быть использовано в химической и электронной промышленности. Фотонно-кристаллические пленки (ФК) на основе монодисперсных сферических частиц кремнезема упрочняют погружением готовых пленок в спиртовый нанозоль кремнезема на короткое время и затем сушат. Нанозоль готовят смешиванием тетраэтоксисилана с водным раствором НСl с рН 1,5 и этиловым спиртом в соотношении 3,5:1:2,5. Смесь выдерживают при температуре 65-75°С в течение 1-2 часов, затем добавляют цетилтриметиламмония хлорид в количестве 200 мг на 3 мл золя. Перед погружением подложки с ФК пленкой золь разбавляют этиловым спиртом в отношении 1:10. Изобретение позволяет получать ФК пленки с твердостью 3,5-4 по шкале Мооса и механической прочностью, сравнимой с прочностью стеклоподобного силикагеля. 1 з.п. ф-лы.

Область техники

Изобретение относится к области получения фотонно-кристаллических (ФК) материалов, в частности фотонно-кристаллических пленок из монодисперсных сферических частиц кремнезема (МСЧК).

Уровень техники

Известен способ нанокристаллизации монокристаллических ФК опаловых пленок из лиофобных спиртовых суспензий в области подвижного мениска на плоские стеклянные подложки (Калинин Д.В., Сердобинцева В.В., Плеханов А.И., академик Шабанов В.Ф. // ДАН. 2006. Т.411. № 2. С.178-181 /1/; Калинин Д.В., Плеханов А.И., Сердобинцева В.В., академик Шабанов В.Ф. // ДАН. 2007. Т.413. № 3. С.329-331 /2/; Калинин Д.В., Сердобинцева В.В., академик Шабанов В.Ф. // ДАН. 2008. Т.420. № .2. С.179-181 /3/).

Известен также метод получения монокристаллических ФК опаловых пленок из лиофильных суспензий в диметилсульфоксиде (ДМСО) путем гравитационной укладки МСЧК в регулярную структуру (Калинин Д.В., Сердобинцева В.В., академик Шабанов В.Ф. // ДАН. 2007. Т.416. № .5. С.610-615 /4/; Калинин Д.В., Сердобинцева В.В., академик Шабанов В.Ф. // ДАН. 2008. Т.419. № 5. С.609-611 /5/).

Фотонно-кристаллические пленки, получаемые этими методами, не имеют механической прочности, поскольку МСЧК в пленке не связаны друг с другом химической связью и не имеют связи со стеклом подложки. Поэтому они легко могут быть стерты со стекла даже при случайном прикосновении. Такие пленки пригодны лишь для научных исследований.

Задачей изобретения является упрочнение готовых пленок до прочности, достаточной для их непосредственного практического применения.

Раскрытие изобретения

Сущность изобретения состоит в том, что ФК пленки на стеклянной подложке, полученные известными методами, например: 1) путем нанокристаллизации МСЧК из лиофобных спиртовых суспензий методом подвижного мениска и 2) методом укладки МСЧК в регулярную структуру в лиофильных суспензиях ДМСО, и не обладающие механической прочностью, погружают в заранее приготовленный спиртовый нанозоль кремнезема на короткое время (5-10 с) и сушат в вертикальном положении подложки в течение не менее 15-20 минут.

Нанозоль готовят путем смешивания тетраэтоксисилана с водным раствором HCl (рН 1,5) и этилового спирта в соотношении 3,5:1:2,5. Смесь выдерживают при температуре 65-75°С в течение 1-2 часов, затем в полученный золь наночастиц кремнезема добавляют цетилтриметиламмония хлорид (ЦТМА, Cl) в количестве 200 мг на 3 мл золя, а перед погружением подложки с ФК пленкой золь разбавляют этиловым спиртом в отношении 1:10.

Введенный в золь цетилтриметиламмония хлорид при высыхании золя играет роль стабилизатора и флокулянта.

При высыхании ФК пленки, пропитанной золем, золь, теряя растворитель - спирт, образует на поверхности частиц в местах их соприкосновения вначале пленки концентрированного золя, затем геля кремнезема и, наконец, прозрачные прочные пленки силикагеля, имеющего твердость 3,5-4 по шкале Мооса, скрепляющие МСЧК в прочную ФК структуру с достаточной механической прочностью, сравнимой с прочностью стеклоподобного силикагеля. ФК пленки после такой обработки сохраняют воздушные пустоты между МСЧК, а яркость дифракционной окраски не уменьшается. Но длина волны дифрагированного света сдвигается в длинноволновую область для ФК пленок, сложенных МСЧК с диаметром 200 нм, на 10-15 нм, а для пленок из МСЧК диаметром 250 нм - на 5-8 нм. Это свидетельствует о том, что при пропитке золем каждая частица окружена пленкой золя, которая при высыхании дает пленки силикагеля вокруг частиц и образует мостики между ними. Т.е. частицы не только несколько увеличиваются в диаметре за счет силикагеля, но и «раздвигаются» мостиками силикагеля, в результате чего увеличивается параметр решетки и возрастает длина волны дифрагированного света.

Пример осуществления способа

Вначале готовят золь наночастиц кремнезема по следующей схеме: 1) смешивают тетраэтоксисилан (Si(OC 2H5)4), водный раствор соляной кислоты с рН 1,5 и этиловый спирт в соотношении 3,5:1:2,5; 2) приготовленную смесь выдерживают при температуре 65-70°С в течение 1-2 часов в закрытом сосуде для созревания золя; 3) в созревший золь для стабилизации золя вводят цетилтриметиламмония хлорид (ЦТМА, Cl) в количестве 200 мг на 3 мл золя и тщательно перемешивают; 5) полученный готовый золь разбавляют этиловым спиртом в объемном отношении 1:10. Затем в разбавленный золь на 5-10 секунд погружают стеклянную подложку с ФК пленкой на ее поверхности, извлекают и сушат в вертикальном положении в течение 10-15 минут, после чего ФК опаловая пленка приобретает механическую прочность и не может быть удалена с поверхности стекла случайными касаниями.

Описанный подход к упрочнению ФК опаловых пленок позволяет получать прочные ФК пленки, что открывает возможность их прямого функционального практического применения в ФК устройствах.

Использованные источники информации

1. Калинин Д.В., Сердобинцева В.В., Плеханов А.И., академик Шабанов В.Ф. Нанокристаллизация монокристаллических пленок опала и спектральная характеристика их фотонных свойств. // ДАН. 2006. Т.411. № 2. С.178-181.

2. Калинин Д.В., Плеханов А.И., Сердобинцева В.В., академик Шабанов В.Ф. Фотонные гетероструктуры на основе монокристаллических пленок опала. // ДАН. 2007. Т.413. № 3. С.329-331.

3. Калинин Д.В., Сердобинцева В.В., академик Шабанов В.Ф. Послойный ступенчатый механизм роста фотонно-кристаллических опаловых пленок при их выращивании методом подвижного мениска. // ДАН. 2008. Т.420. № .2. С.179-181.

4. Калинин Д.В., Сердобинцева В.В., академик Шабанов В.Ф. Рост монокристаллических пленок опала из лиофильных суспензий монодисперсных сферических частиц кремнезема. // ДАН. 2007. Т.416. № .5. С.610-615.

5. Калинин Д.В., Сердобинцева В.В., академик Шабанов В.Ф. Механизм укладки монодисперсных сферических частиц кремнезема в фотонно-кристаллическую пленочную структуру из лиофильных суспензий. // ДАН. 2008. Т.419. № 5. С.609-611.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ упрочнения фотонно-кристаллических пленок на основе моно-дисперсных сферических частиц кремнезема путем кратковременного погружения готовых пленок в золь наночастиц кремнезема, приготовленный из смеси тетраэтоксисилана Si(OC2H5) 4, водного раствора соляной кислоты с рН 1,5 и этилового спирта в соотношении 3,5:1:2,5, которую нагревают при температуре 65-75°С в течение 1-2 ч, затем вводят в нее цетилтриметиламмония хлорид (ЦТМА, Сl) в количестве 200 мг на 3 мл смеси, а перед погружением пленок золь разбавляют этиловым спиртом в соотношении 1:10.

2. Способ по п.1, отличающийся тем, что пленки погружают в приготовленный золь на 5-10 с, а затем сушат в течение не менее 10-15 мин.


Скачать патент РФ Официальная публикация
патента РФ № 2399586

patent-2399586.pdf
Патентный поиск по классам МПК-8:

Класс C01B33/14 коллоидный диоксид кремния, например дисперсии, гели, золи

Патенты РФ в классе C01B33/14:
способ получения композиционных материалов на основе диоксида кремния -  патент 2528667 (20.09.2014)
способ получения геля кремниевой кислоты -  патент 2525087 (10.08.2014)
способ получения минеральной кремниевой воды -  патент 2523415 (20.07.2014)
дисперсия гидрофобизированных частиц диоксида кремния и изготовленные из нее гранулы -  патент 2472823 (20.01.2013)
способ получения кремнийоксидных соединений, легированных алюминием и редкоземельными элементами -  патент 2436731 (20.12.2011)
способ получения золя оксида кремния, модифицированного алюминатом натрия -  патент 2433953 (20.11.2011)
оксиды кремния -  патент 2431465 (20.10.2011)
способ получения наночастиц кремнезема -  патент 2426692 (20.08.2011)
содержащая смешанный оксид кремния и титана дисперсия для получения титаносодержащих цеолитов -  патент 2424978 (27.07.2011)
способ получения фотонно-кристаллических опаловых пленок -  патент 2389683 (20.05.2010)

Класс C01B33/18 получение тонкодисперсного диоксида кремния в форме иной, чем золь или гель; последующая обработка его

Патенты РФ в классе C01B33/18:
способ получения тонкодисперсного аморфного микрокремнезема -  патент 2526454 (20.08.2014)
способ получения нанопорошка аморфного диоксида кремния -  патент 2488462 (27.07.2013)
способ комплексной очистки промышленных сточных вод, образующихся в производстве особо чистого кварцевого концентрата -  патент 2480421 (27.04.2013)
способ переработки отходящих газов, образующихся в процессе получения пирогенного диоксида кремния высокотемпературным гидролизом хлоридов кремния -  патент 2468993 (10.12.2012)
способ получения мелкодисперсных кремнеземов -  патент 2447020 (10.04.2012)
диоксиды кремния с модифицированной поверхностью -  патент 2445261 (20.03.2012)
способ переработки кремнийсодержащих отходов пламенным гидролизом и устройство для его осуществления -  патент 2440928 (27.01.2012)
способ переработки рисовой шелухи и получение порошка нанокристаллического -кристобалита -  патент 2440294 (20.01.2012)
диоксиды кремния с модифицированной поверхностью -  патент 2438973 (10.01.2012)
устройство и способ получения высокодисперсного диоксида кремния -  патент 2435732 (10.12.2011)

Класс B82B1/00 Наноструктуры

Патенты РФ в классе B82B1/00:
многослойный нетканый материал с полиамидными нановолокнами -  патент 2529829 (27.09.2014)
материал заменителя костной ткани -  патент 2529802 (27.09.2014)
нанокомпозитный материал с сегнетоэлектрическими характеристиками -  патент 2529682 (27.09.2014)
катализатор циклизации нормальных углеводородов и способ его получения (варианты) -  патент 2529680 (27.09.2014)
способ определения направления перемещения движущихся объектов от взаимодействия поверхностно-активного вещества со слоем жидкости над дисперсным материалом -  патент 2529657 (27.09.2014)
способ формирования наноразмерных структур -  патент 2529458 (27.09.2014)
способ бесконтактного определения усиления локального электростатического поля и работы выхода в нано или микроструктурных эмиттерах -  патент 2529452 (27.09.2014)
способ изготовления стекловидной композиции -  патент 2529443 (27.09.2014)
комбинированный регенеративный теплообменник -  патент 2529285 (27.09.2014)
способ изготовления тонкопленочного органического покрытия -  патент 2529216 (27.09.2014)


Наверх