способ плазменно-дуговой сварки металлов

Классы МПК:B23K10/02 плазменная сварка
Автор(ы):,
Патентообладатель(и):Агриков Юрий Михайлович (RU)
Приоритеты:
подача заявки:
2008-06-02
публикация патента:

Изобретение относится к способу плазменно-дуговой сварки металлов и может быть использовано в машиностроении и строительстве, а также для бытовых и хозяйственных нужд. Сварку металлов осуществляют сжатой дугой косвенного действия. Для этого формируют плазменную струю путем обжатия дуги плазмообразующей средой, получаемой в результате парообразования рабочей жидкости непосредственно в плазмотроне, содержащем резервуар для рабочей жидкости. Используют рабочую жидкость, содержащую воду с добавлением спирта и 10% раствора аммиака. Содержание в рабочей жидкости аммиака составляет 0,3-3,0 мас.%, а спирта - 30-60 мас.%. Введение в рабочую жидкость водного аммиачного раствора увеличивает срок службы электродного узла, повышает мощность и стабильность дуги, облегчает заправку плазмотрона рабочей жидкостью, обеспечивает возможность сокращения размеров и веса электродного узла плазмотрона. 1 з.п. ф-лы, 2 ил., 1 табл.

способ плазменно-дуговой сварки металлов, патент № 2397848 способ плазменно-дуговой сварки металлов, патент № 2397848

Формула изобретения

1. Способ плазменно-дуговой сварки металлов, включающий формирование с помощью дуги косвенного действия плазменной струи путем обжатия дуги плазмообразующей средой, получаемой путем парообразования в плазмотроне рабочей жидкости, содержащей воду с добавлением спирта, отличающийся тем, что в рабочую жидкость добавляют 10%-ный водный раствор аммиака, при этом содержание в рабочей жидкости аммиака составляет 0,3-3,0 мас.%, а спирта-30-60 мас.%.

2. Способ по п.1, отличающийся тем, что в плазменной струе создают ультразвуковые колебания.

Описание изобретения к патенту

Настоящее изобретение относится к способам плазменно-дуговой сварки металлов, их сплавов и может быть использовано в машиностроении, строительстве и других отраслях промышленности, а также для бытовых и хозяйственных нужд.

Известны способы плазменной или плазменно-дуговой сварки металлов сжатой дугой косвенного действия, в которых плавление металла производится только плазменной струей, а также способы плазменно-дуговой сварки металлов совмещенной с плазменной струей сжатой дугой прямого действия, возбуждаемой между электродами плазмотрона и обрабатываемым изделием [1-3].

Упомянутые способы предусматривают образование плазменной струи путем сжатия и стабилизации дугового разряда (дуги) плазмообразующим газом [1-3], в частности смесью паров воды, кислородосодержащих производных углеводородов или водорастворимых спиртов [3-6], в разрядной камере плазмотрона и далее в канале формирующего струю плазмы сопла-анода.

Практическое применение нашли компактные сварочные аппараты, например «ГОРЫНЫЧ» [6] и «МУЛЬТИПЛАЗ-2500М», включающие блок электропитания и малоамперный (до 15 А) электродуговой плазмотрон пистолетного типа, в котором для создания плазменной струи используют капиллярные силы при подаче рабочей жидкости, например воды или водно-спиртовой смеси, в испаритель плазмотрона, нагреваемый за счет тепла, выделяемого электродами. Жидкость заливают во встроенный в плазмотрон резервуар, заполненный капиллярно-пористым влаговпитывающим материалом.

В качестве наиболее близкого аналога (прототипа) заявляемого изобретения выбран способ плазменно-дуговой сварки металлов [3], включающий обжатие дуги плазмообразующей средой с получением плазменной струи. В этом способе в качестве плазмообразующей среды используют пары рабочей жидкости, представляющей собой, в частности, смесь воды и спирта, при этом за счет наличия кислорода, углерода и водорода при сварке в плазме снижаются ее окисляющие свойства. Смесь приготовляют путем наливания спирта в воду с последующей заправкой смесью плазмотрона без дополнительной гомогенизации смеси с целью получения так называемого истинного раствора.

Известно [3-5], что удовлетворительный результат по предотвращению окисления металла при сварке получают использованием водного раствора этилового или пропилового спиртов (этанола или пропанола), а оптимальным с точки зрения энергетики и прочности сварного шва является содержание спирта в парообразующей жидкости в пределах 30-60 мас.%. При этом следует учитывать известное в химии растворов явление экзотермической контракции в процессе растворения спиртов в воде, сопровождаемое изменением объема и температуры раствора, образованием так называемых спиртогидратов, включающих до 12-ти молекул воды на одну молекулу спирта, а также известные в химии законы Коновалова, гарантирующие равномерное по составу паров испарение смесей только в виде гомогенных (истинных) растворов, причем в отношении спиртов еще важно достичь при приготовлении рабочей жидкости полной гидратации спирта в воде, на которое требуется некоторое время, сравнимое, например, со временем «схватывания» гипса. Получаемый при этом раствор после стабилизации его температуры является равновесным.

При уменьшении содержания спирта в смеси ниже нижнего предела увеличивается присутствие окалины в сварном соединении, что в свою очередь снижает его прочностные характеристики. При превышении 60% содержания спирта в смеси с водой наблюдается расслоение смеси и это приводит к неравномерному ее испарению. К тому же при этом падает энтальпия пара, что в свою очередь понижает температуру плазменной струи. Наилучший результат дало использование плазмотрона, в котором плазмообразующий пар получен из смеси, содержащей 60% деионизованной или дистиллированной воды и 40% этилового спирта [3].

Известные рабочие жидкости вызывают затруднения при заправке ими плазмотрона, особенно при низкой температуре, недостаточно обогащают плазму газами-восстановителями и ограничивают срок эксплуатации электродного узла. Наблюдается также загрязнение испарителя, изолятора и электродного узла в канале плазмотрона нежелательными осаждениями, а жидкость, приготовленная в соответствии с описанием [3], вызывает при сварке нестабильность состава плазменной струи. Для удобства работы особенно при низких температурах целесообразно понизить величину поверхностного натяжения рабочей жидкости с целью повышения ее текучести, смешиваемости ингредиентов до состояния гомогенности, ускорения гидратации спирта и сокращения, в частности, времени заполнения в плазмотроне резервуара рабочей жидкостью. Известно [1], что введение в плазмообразующую среду газообразного аммиака повышает мощность (энергоемкость) плазмы и энтальпию плазменной струи, а также повышает эксплуатационные характеристики электродов, в частности, за счет образования нитридной пленки на поверхности термостойкой вставки в катоде. Кроме того, известно, что введение в смесь растворителей дополнительного ингредиента, в частности водного раствора аммиака, повышает взаимную растворимость всех ингредиентов и способствует дальнейшей гомогенизации раствора, в частности гидратации спиртов в воде, как необходимого условия равномерного по составу паров парообразования многокомпонентного раствора. Неравномерность испарения затрудняет запуск плазмотрона, вызывает шунтирование дуги и снижает качество сварных швов.

Изобретение направлено на решение задачи создания способа плазменно-дуговой сварки металлов на базе малогабаритного сварочного оборудования с использованием пара трехкомпонентной рабочей жидкости в виде раствора в качестве плазмообразующей среды, обеспечивающего высокое качество сварных соединений, путем снижения не только окисляющих свойств плазменной струи, но и повышения ее мощности, стабильности и увеличения срока службы электродов плазмотронов, а для последних пистолетного типа с резервуаром для рабочей жидкости - и на удобство работы с ними при низких температурах за счет сокращения длительности заправки резервуара рабочей жидкостью, на возможность конструктивных доработок электродных узлов плазмотронов с целью уменьшения их размеров и веса с соответствующей экономией меди.

Сущность изобретения заключается в том, что рабочую жидкость создают в отличие от аналога в виде водного раствора спирта и аммиака (NН 3) путем смешивания до состояния гомогенности дистиллированной или деионизованной воды, водорастворимого спирта и малоконцентрированного водного раствора аммиака, например 10%-ного аммиачного раствора (нашатырного спирта по ТУ 1004-92), который широко используется, в частности, для медицинских, бытовых и хозяйственных целей. Порядок разбавления воды указанными ингредиентами для получения необходимого раствора может быть любым при условии гомогенизации любым известным способом полученной смеси в закрытом сосуде, например встряхиванием в течение нескольких минут. Полученная рабочая жидкость обладает пониженным поверхностным натяжением и повышенной текучестью при низких температурах и по сравнению с прототипом более равномерно испаряется в испарителе плазмотрона за счет однородной по объему гидратации молекул спирта и полной смешиваемости ингредиентов до состояния истинного раствора. Как следствие, использование рабочей жидкости в виде раствора в отличие от аналога устраняет нестабильность состава плазмы в процессе сварки и часто наблюдаемое шунтирование дуги, а также ускоряет заправку плазмотрона рабочей жидкостью. Использование стандартизированного нашатырного спирта для введения аммиака в рабочую жидкость в растворенном состоянии, а не в виде газа позволяет не применять газобаллонное оборудование и элементарным расчетом определить содержание собственно аммиака в рабочей жидкости как необходимого ингредиента раствора. Для сварки достаточным содержанием аммиака является 0,3-3,0 мас.% в трехкомпонентном водном растворе, содержащем 30-60 мас.% спирта, например этанола.

Так, для получения рабочей жидкости массой М необходимо разбавить воду массой m1 спиртом массой m2=х·М/100% и 10%-ным нашатырным спиртом массой m3=y·М/10%, где х и у, соответственно, необходимое содержание (в мас.%) в жидкости спирта и аммиака, a m1=М-m2-m 3.

При содержании аммиака в рабочей жидкости менее 0,3 мас.% его указанное выше действие не наблюдается, при содержании более 3,0 мас.% наблюдается так называемая «веерность» плазменной струи и снижается эффективность ее действия на обрабатываемую поверхность при сварке.

Таким образом, рабочая жидкость согласно изобретению позволяет ввести в плазму дополнительно водород как газ-восстановитель и азот, что повышает мощность плазмы, продлевает срок службы электродного узла, препятствует осаждению углеродных и других осаждений на его деталях и способствует повышенной впитываемости рабочей жидкости в капиллярно-пористый наполнитель резервуара. Кроме того, за счет водорода снижаются окисляющие свойства плазмы в зоне сварки, а использование дистиллированной или деионизованной воды в качестве основы рабочей жидкости совместно с известным действием аммиака устраняет нежелательные осаждения на испарителе и изоляторах в канале плазмотрона, способствует ускоренной растворимости спирта и стабильности состава плазмы.

Парообразование может быть произведено, как и в прототипе, непосредственно в плазмотроне путем испарения рабочей жидкости, заполняющей в нем специальный резервуар, за счет тепловой энергии, выделяемой горящей дугой на электродах.

Основным техническим результатом заявленного изобретения является повышение гомогенности и текучести рабочей жидкости, в частности, при пониженной температуре за счет уменьшения ее поверхностного натяжения, что сокращает время заправки плазмотрона путем пропитки жидкостью влаговпитывающего наполнителя в резервуаре плазмотрона и одновременно способствует ускоренной смешиваемости ингредиентов раствора до состояния необходимой гомогенности, и, как следствие, повышение стабильности состава плазменной струи в процессе сварки, а также устранение нежелательных отложений на деталях плазмотрона и уменьшение выработки катода.

Заявленный способ плазменно-дуговой сварки осуществляют посредством электродугового плазмотрона с дугой косвенного действия, при этом тепловая энергия передается обрабатываемому изделию плазменной струей, выходящей из сопла-анода плазмотрона. Возможно возбуждение в зоне сварки ультразвуковых колебаний путем соответствующей модуляции тока или напряжения на дуге или повышением содержания в плазме атомов водорода за счет добавления в рабочую жидкость достаточного количества водного аммиачного раствора.

Сварку дугой косвенного действия осуществляют следующим образом (на примере многофункционального портативного плазменного комплекса «ГОРЫНЫЧ» [6], состоящего из блока питания и управления БПУ-220/8 и плазмотрона ГП-22).

Указанный комплекс является электродуговым генератором низкотемпературной плазмы, получаемой нагревом паров рабочей жидкости в плазмотроне до температуры ионизации. Внешний вид блока питания и плазмотрона показан на фиг.1 и 2. Конструкция электродного узла плазмотрона известна и широко используется.

Дозируют жидкие компоненты, входящие в рабочую смесь, например, мас.%: этиловый спирт - 40, вода дистиллированная - 57 и раствор аммиака (ТУ 1004-92) - 3.

Заправляют плазмотрон рабочей жидкостью. Для этого отворачивают крышку заправочной горловины 6. Производят заправку плазмотрона до появления капель рабочей жидкости из отверстия сопла-анода 5. Первые 2/3 объема рабочей жидкости заправляются свободно, затем скорость заправки уменьшается, что обусловлено свойствами влаговпитывающего материала, находящегося внутри плазмотрона. Заворачивают крышку.

Запуск плазмотрона производят при любом значении тока, отображаемом на цифровом индикаторе 4 блока питания. С помощью кнопок 2 и 3 блока питания задают требуемый токовый режим. Нажимают на блоке питания кнопку 1. В течение восьми секунд после нажатия кнопки 1 нажимают на плазмотроне до упора кнопку 7 и плавно ее отпускают. Через несколько секунд из сопла-анода 5 появится плазменная струя.

Сварка в режиме дуги косвенного действия сходна с газовой сваркой [1, 3]. Выбор конкретных токовых режимов работы блока питания определяют рекомендациями в краткой технологической инструкции [7], например осуществляют сварку «встык» медных пластин толщиной 5 мм, без флюса.

Присадочный материал Состав рабочей жидкости, мас.% Ток в дуге, АНапряжение на дуге, В«Звучание» дуги
Медная проволока, диаметр 2 мм Спирт этиловый 40, аммиак 2, вода 58 5160 Нет
Припой П81 в виде прутка с желобком Спирт 40, аммиак 3, вода 57 (пайкосварка) 4175 Есть

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Сварка в машиностроении (справочник). Под ред. Ольшанского Н.А. Том 1. - М.: Машиностроение, 1978.

2. Микроплазменная сварка. Под ред. Патона Б.Е. - Киев: Наукова Думка, 1979, с.19-21.

3. Патент России № 2103129, кл. 6 В23К 10/02 (заявка 1997.03.03), опубл. 1998.01.27.

4. Авторское свидетельство СССР № 844178, кл. В23К 9/16, 1981.07.07.

5. Авторское свидетельство СССР № 1655702, кл. В23К 10/00, 1991.15.06.

6. Многофункциональный портативный плазменный комплекс «ГОРЫНЫЧ». Руководство по эксплуатации. - М.: ООО «АС и ПП», 2008 (http://www.as-pp.ru).

7. Многофункциональный портативный плазменный комплекс «ГОРЫНЫЧ». Краткая технологическая инструкция. - М.: ООО «АС и ПП», 2008 (http://www.as-pp.ru).

Класс B23K10/02 плазменная сварка

устройство для подачи порошковой смеси для плазменной наплавки -  патент 2523214 (20.07.2014)
способ плазменной сварки плавящимся электродом -  патент 2495735 (20.10.2013)
горелка для точечной плазменной сварки -  патент 2479394 (20.04.2013)
способ контроля качества плазменной точечной сварки -  патент 2444424 (10.03.2012)
способ плазменной наплавки сужающейся боковой части носка почворежущего рабочего органа со стороны полевого обреза -  патент 2421956 (27.06.2011)
способ плазменной обработки негорючих материалов -  патент 2418662 (20.05.2011)
способ плазменной наплавки -  патент 2412030 (20.02.2011)
способ микроплазменной сварки металлов -  патент 2411112 (10.02.2011)
способ сварки материалов -  патент 2404887 (27.11.2010)
сварочный инструмент -  патент 2393945 (10.07.2010)
Наверх