способ извлечения мышьяка из водных растворов

Классы МПК:C22B30/04 получение мышьяка
C22B3/44 химическими способами
Автор(ы):, , , , ,
Патентообладатель(и):Институт проблем комплексного освоения недр РАН (RU)
Приоритеты:
подача заявки:
2008-07-18
публикация патента:

Изобретение относится к гидрометаллургии цветных металлов, в частности к способам извлечения мышьяка из растворов, и может быть использовано для извлечения мышьяка из сточных вод металлургической, химической и других отраслей промышленности, а также в производстве металлов из вторичного сырья. Способ извлечения мышьяка из растворов, содержащих ряд металлов, включает осаждение мышьяка в виде арсената добавлением соединения железа. Осаждение ведут с использованием в качестве соединения железа модифицированных катионным поверхностно-активным веществом (ПАВ) нанокристаллов акаганеита (способ извлечения мышьяка из водных растворов, патент № 2395600 -Fе3+O(ОН) в наноструктурном диапазоне в пределах от 2,12 до 2,34 нм и при рН 6-8. Осаждение арсенатов ведут из растворов с концентрацией ионов мышьяка, равной 0,5-1,0 мг/л. Модифицированные катионным поверхностно-активным веществом кристаллы акаганеита получают путем сорбции катионного поверхностно-активного вещества - гексилдецил триметил аммония бромида (ГДТМВr) на акаганеите, осмоса на мембране М 45 и сублимационной сушки при комнатной температуре. Техническим результатом является снижение затрат и повышение эффективности извлечения мышьяка. 2 з.п. ф-лы, 3 ил., 1 табл.

способ извлечения мышьяка из водных растворов, патент № 2395600 способ извлечения мышьяка из водных растворов, патент № 2395600 способ извлечения мышьяка из водных растворов, патент № 2395600

Формула изобретения

1. Способ извлечения мышьяка из растворов, содержащих ряд металлов, включающий осаждение мышьяка в виде арсената добавлением соединения железа, отличающийся тем, что осаждение ведут с использованием в качестве соединения железа модифицированных катионным поверхностно-активным веществом (ПАВ) нанокристаллов акаганеита (способ извлечения мышьяка из водных растворов, патент № 2395600 -Fе+3O(ОН) в наноструктурном диапазоне в пределах от 2,12 до 2,34 нм и при рН 6-8.

2. Способ по п.1, отличающийся тем, что осаждение арсенатов ведут из растворов с концентрацией ионов мышьяка, равной 0,5-1,0 мг/л.

3. Способ по п.1, отличающийся тем, что модифицированные катионным поверхностно-активным веществом кристаллы акаганеита с площадью поверхности 299-300 м2 /г и максимальной сорбционной емкостью ионов мышьяка 328,3 мг As(III) /на грамм акаганеита получают путем сорбции катионного поверхностно-активного вещества - гексилдецил триметил аммония бромида (ГДТМВr) на акаганеите, осмоса на мембране М 45 и сублимационной сушки при комнатной температуре.

Описание изобретения к патенту

Изобретение относится к гидрометаллургии цветных металлов, в частности к способам извлечения мышьяка из растворов, и может быть использовано для извлечения мышьяка из сточных вод металлургической, химической и других отраслей промышленности, а также в производстве металлов из вторичного сырья. Для извлечения As из разбавленных растворов использовали гидроксиды железа, в качестве которого применяли нанокристаллы способ извлечения мышьяка из водных растворов, патент № 2395600 -FeO(OH) акаганеита, модифицированные катионным поверхностно-активным веществом.

Известны способы удаления мышьяка из пылей свинцово-цинкового производства в нетоксичный сульфид мышьяка путем сульфидизации материала элементарной серой, выщелачивания сульфидом натрия, и из раствора мышьяк осаждается в виде сульфидов серной кислотой при рН 2 известными способами [1-2]. Известен способ удаления мышьяка, в котором для выделения As из раствора используют осадок Fе(ОН)3, образующийся в результате окисления кислородом под давлением ионов Fe2+, содержащихся в растворе или добавляемых в виде FeSO4. Степень соосаждения соединений As при рН 3,5-4,6 достигает 99,5% и зависит от соотношения Fe3+/As [3].

Для извлечения анионов мышьяка наиболее распространено осаждение их путем коагуляции солями алюминия и железа. Оксианионы мышьяка (V) были удалены из разбавленных водных растворов сорбцией их на тонких частицах синтетического гетита FeO(OH) и гидрооксидов железа [4].

Ближайшим по технической сущности и достигаемому результату к предлагаемому является способ переработки мышьяксодержащих пылей и возгонов, включающий их выщелачивание и выделение из растворов арсенатов, в исходный материал вводят добавку соли трехвалентного железа, а выщелачивание ведут раствором, содержащим 280-300 г/л хлористого натрия и 0,5-1,0 г/л соляной кислоты при 85-100°С, рН 0,8-1,2 и барботировании воздухом, а осаждение арсенатов железа ведут при рН 2,2-2,8 [4].

Технический результат изобретения - повышение степени извлечения мышьяка из растворов, предлагается использовать осадок акаганеита, модифицированный поверхностно-активным веществом, вывод мышьяка в низкотоксичную форму арсената железа, что не требует построения специального дорогостоящего сооружения для захоронения. Преимущество предлагаемого способа заключается в том, что он пригоден для низких концентрации извлекаемых ионов 5-10 мг/л, когда частицы не могут быть эффективно выделены существующими методами.

Сущность изобретения поясняется чертежами, где на фиг.1 представлены результаты сравнения экспериментальных данных поглощения с теоретическими кривыми для уравнения кинетики первого порядка; на фиг.2 показано влияние рН на удаление (R%) As (концентрация модифицированного акаганеита-сорбента - 0,5 г/л, исходная концентрация As(III) - 10 мг/л, время контакта 24 час и температура - 298 K) и на фиг.3 даны изотермы сорбции арсенатов на Ак и Акм при различных экспериментальных условиях: навеска модифицированного акаганеита 0,5 г/л, температура 25°С, время контакта 24 ч.

Предложен способ извлечения мышьяка из растворов, содержащих ряд металлов, включающий осаждение мышьяка в виде арсенатов добавлением соединения железа путем использования в качестве соединения железа модифицированных катионным поверхностно-активным веществов (ПАВ) нанокристаллов акаганеита способ извлечения мышьяка из водных растворов, патент № 2395600 -Fe3+O(OH) в пределах от 2,12 до 2,34 нм при ионной силе раствора 0,1 KNO3 и при рН 4,5. Модифицированный акаганеит Акм приготовлен после сорбции катионного поверхностно-активного вещества - гексилдецил триметил аммония бромида (ГДТМВr) на акаганеите.

Используемые нанокристаллы акаганеита (АК) с площадью поверхности 299-300 м2/г и максимальной сорбционной емкостью 100-120 мг As(V) на г акаганеита получают путем осаждения хлорида железа (III) карбонатом аммония, осмоса на мембране М 45 и сублимационной сушки при комнатной температуре.

Акм эффективен для удаления арсенатов мышьяка из водных растворов. Максимальная сорбция арсенатов мышьяка была установлена 328,3 мг/г в широком диапазоне рН, что значительно выше, чем для всех известных сорбентов.

Синтез модифицированного акаганеита Акм осуществляли следующим образом. В колбы объемом 200 мл добавляли 100 мл 0,01 М раствора катионного ПАВ. Каждый раствор содержал 1,0 г Ак, и регулировали рН до 11.

Раствор перемешивали в ванне при температуре 25÷1°С в течение 24 ч шейкером до достижения равновесия сорбции (ГДТМВr). Отделение жидкости суспензии осуществляли на мембране размером 0,45 мкм и затем сорбент направляли на сублимационную сушку. Данные адсорбции ГДТМВr на акаганеите соответствует уравнению Фрейндлиха типа: Qeq=KF·Ceqспособ извлечения мышьяка из водных растворов, патент № 2395600 1/n, где Qeq есть количество ГДТМВr, сорбированного на единицу веса твердого сорбента (Ак), C eq - концентрация растворенного вещества в растворе при равновесии, и KF и 1/n - константы, показывающие адсорбционную способность и адсорбционную интенсивность, соответственно.

Значение этих констант представлено в таблице.

Таблица
Параметры равновесия для акаганеита Ак и акаганеита Акм для различных экспериментальных условий
Материал pH (-) Лэнгмюровские константы Фрейндлихские константы
R2 (-) Qmax (мг/г)K L (L мг/л) R2 (-) КF (мг/г) 1/n (-)
ГДТМВr на Аkспособ извлечения мышьяка из водных растворов, патент № 2395600 0,994 765,0 0,0030,998 0,7 7,376
As(III) нa Ak4 0,93975,9 0,2170,965 21,6 2,837
As(III) на Ak7 0,994135,2 0,063 0,98912,7 1,686
Аs(III) на Akm7 0,990328,3 0,042 0,98618,9 1,424
As(III) на Akm4 0,866169,6 0,104 0,76633,8 2,510

Сорбция ГДТМВr описывается изотермой Лэнгмюра с коэффициентом корреляции (R2) свыше 0,99, и максимальная адсорбция былa (Qmax) 765 мг/г.

Значения Qmax и KL также представлены в таблице. Для получения растворов мышьяка (III) использовали триоксид мышьяка 99,8% чистоты. Использовали растворы с ионной силой 0,1 М. Навеску модифицированного акаганеита Ак м весом 0,5 г/л помещали в серию колб с растворами мышьяка, варьируя начальную концентрацию As(III) от 0 до 300 мг/л. Регулирование pH осуществляли 0,1 М НСl или 0,1 М NaOH. Остаточную концентрацию определяли после мембранной фильтрации на мембране размером 0,45 мкм. Растворы перемешивали шейкером в течение 24 ч при температуре 25°С до достижения равновесия. Предварительными экспериментами установлено, что после 24 ч не наблюдалось изменение количества сорбции мышьяка. На фиг.1 представлены полученные результаты.

Найдено, что максимальная сорбционная емкость составляла 328,3 мг As(III) на г акаганеита, что выше по сравнению с другими сорбентами.

Осаждение арсенитов ведут при отношении железа акаганеита Fe/As к ионам мышьяка, равном 0,5-1,0.

Исследовали влияние рН на удаление (R%) As (концентрация модифицированного акаганеита-сорбента - 0,5 г/л, исходная концентрация As(III) - 10 мг/л, время контакта 24 час и температура - 298 K).

На фиг.2 представлены полученные результаты.

Как следует из фиг.2, максимальная сорбция наблюдается в пределах рН от 6 до 8, наилучшие результаты получены при рН 7.

Удаление As(III) на модифицированном акаганеита всегда было выше, чем на не модифицированном акаганеите (см. фиг.3).

Предлагаемое техническое решение соответствует критериям промышленной применимости, новизне и изобретательному уровню.

Техническим результатом является снижение затрат и повышение эффективности очистки сточных вод от катионов тяжелых металлов и арсенатов.

Источник информации

1. Авт.св. 789619 СССР. Способ удаления мышьяка из пылей свинцово-цинкового производства. Опубл. 23.10.80, бюл. № 39.

2. Авт.св. 990841 СССР, С22В 7/02. Способ удаления мышьяка из свинец- и цинксодержащих пылей, опубл. 23.01.1983, бюл. № 3.

3. Японская заявка. Така Сиро, Кудо Томоси, Кибаяси Ясуси, кл.10А 22, (С22В 3/00 № 54-82307). Способ удаления мышьяка из сернокислых растворов. Опубл. 30.06.79.

4. Авт.св. 914647, СССР, М Кл 3 С22В 7/02. Способ переработки мышьяксодержащих конвертерных пылей и возгонов. Опубл. 23.03.1982. Бюл. № 11 (прототип).

Класс C22B30/04 получение мышьяка

способ переработки отходов цветной металлургии, содержащих мышьяк и серу -  патент 2486135 (27.06.2013)
способ обезвреживания мышьяксодержащих сульфидных кеков -  патент 2483129 (27.05.2013)
способ удаления мышьяка из отходов кобальтового производства -  патент 2477326 (10.03.2013)
способ получения антисептического препарата из мышьяксодержащих продуктов, полученных при уничтожении люизита -  патент 2414347 (20.03.2011)
способ получения элементного мышьяка -  патент 2409687 (20.01.2011)
способ переработки арсенопиритных сульфидных золотосодержащих концентратов -  патент 2350667 (27.03.2009)
способ извлечения мышьяка из водных растворов -  патент 2323988 (10.05.2008)
не загрязняющий окружающую среду способ вакуумной экстракции мышьяка и оборудование для его осуществления -  патент 2293130 (10.02.2007)
способ экстракции золота из содержащего мышьяк и золото концентрата и оборудование для его осуществления -  патент 2293127 (10.02.2007)
экстракционный способ извлечения мышьяка (+5) из кислых сульфатных растворов -  патент 2260068 (10.09.2005)

Класс C22B3/44 химическими способами

Наверх