способ получения карбоксильных катионитов

Классы МПК:C08F220/44 акрилонитрил
C08F212/36 дивинилбензол
C08F220/06 акриловая кислота; метакриловая кислота; их металлические или аммониевые соли
Автор(ы):, , , ,
Патентообладатель(и):Открытое акционерное общество "Ведущий научно-исследовательский институт химической технологии" (RU)
Приоритеты:
подача заявки:
2008-09-30
публикация патента:

Изобретение относится к способам получения слабокислотных карбоксильных катионитов, используемых в сорбционных процессах в гидрометаллургии, биотехнологии и теплотехнике. Описан способ получения карбоксильных катионитов суспензионной сополимеризацией акрилонитрила, дивинилбензола и метакриловой кислоты в присутствии порообразователя и инициатора полимеризации перекиси бензоила в среде водно-солевого раствора картофельного крахмала, содержащего 20% хлористого натрия или аммония, или в среде водного раствора целлюлозы, с последующим щелочным гидролизом нитрильных групп сополимера, при содержании в полимеризационной смеси 71-76,5% акрилонитрила, 8-12% дивинилбензола, 5-10% метакриловой кислоты и использовании в качестве порообразователя бутилацетата в количестве 15-40% к объему смеси мономеров. 1 табл.

Формула изобретения

Способ получения карбоксильных катионитов суспензионной сополимеризацией акрилонитрила, дивинилбензола и метакриловой кислоты в присутствии порообразователя и инициатора полимеризации перекиси бензоила в среде водно-солевого раствора картофельного крахмала, содержащего 20% хлористого натрия или аммония, или в среде водного раствора целлюлозы, с последующим щелочным гидролизом нитрильных групп сополимера, при содержании в полимеризационной смеси 71-76,5% акрилонитрила, 8-12% дивинилбензола, 5-10% метакриловой кислоты и использовании в качестве порообразователя бутилацетата в количестве 15-40% к объему смеси мономеров.

Описание изобретения к патенту

Изобретение относится к способам получения слабокислотных карбоксильных катионитов, используемых в сорбционных процессах в гидрометаллургии, биотехнологии и теплотехнике, в частности к получению карбоксильных катионитов сополимеризацией акрилонитрила и дивинилбензола в присутствии порообразователей с последующим гидролизом нитрильных групп.

Известен способ получения карбоксильных катионитов сополимеризацией акрилонитрила и дивинилбензола с использованием в качестве порообразователей бензина БР-2, синтина и др. Окислительный гидролиз нитрильных групп концентрированными растворами азотной кислоты или ее смесью с серной кислотой позволяет получить катиониты с обменной емкостью 8-10 мг-экв/г (авт. свид. СССР № 448193, кл. C08F 27/14, опубл. 16.05.75).

Известен также способ получения карбоксильного катионита окислительным гидролизом сополимера акрилонитрила, дивинилбензола и алкилстиролов, содержащихся в отходе производства дивинилбензоле - предгоне ректификации сырца. Поробразователем служит смесь неполимеризующихся ароматических соединений, находящихся в предгоне, иногда в смеси с алкилбензином (авт. свид. СССР № 575871, кл. C08F 220/06, опубл. 14.06.77).

Недостатком известных способов является образование при окислительном гидролизе сополимеров некоторого количества аминных и нитрильных групп, что препятствует использованию катионитов в технологии водоподготовки на атомных и тепловых электростанциях.

Наиболее близким к предлагаемому способу по сущности технологического решения является способ получения карбоксильных катионитов гидролизом 25%-ным водным раствором едкого натра сополимеров акрилонитрила, дивинилбензола и метилметакрилата, синтезированного с применением алкилбензина или авиационного керосина в качестве порообразователей (патент RU 2326130, кл. C08F 19/20, опубл. 2008 г.).

В условиях, предлагаемых известным способом, возможно получение катионитов, имеющих полную обменную емкость до 2,6 мг-экв/см 3 и динамическую обменную емкость 1800-2200 г-экв/м 3, что, однако, является недостаточным для эффективного использования катионитов в современной технологии водоподготовки на АЭС и ТЭЦ.

Техническим результатом изобретения является нахождение условий получения карбоксильных катионитов на основе акрилонитрила с повышенной обменной емкостью, а именно со статической обменной емкостью не менее 3,5 мг-экв/см3 и динамической обменной емкостью с заданным расходом регенерирующего вещества не менее 2700 г-экв/м3.

Технический результат достигается тем, что в способе получения карбоксильных катионитов суспензионной сополимеризацией акрилонитрила, дивинилбензола и метакриловой кислоты в присутствии порообразователя и инициатора полимеризации перекиси бензоила в среде водно-солевого раствора картофельного крахмала, содержащего 20% хлористого натрия или аммония, или в среде водного раствора целлюлозы, с последующим щелочным гидролизом нитрильных групп сополимера, при содержании в полимеризационной смеси 71-76,5% акрилонитрила, 8-12% дивинилбензола, 5-10% метакриловой кислоты, а в качестве порообразователя используют бутилацетат в количестве 15-40% к объему смеси мономеров.

Указанные меры преобразуют структуру полимерной матрицы, способствуя более полному превращению нитрильных групп в карбоксильные при последующем гидролизе, что характеризуется повышением статической обменной емкости, и интенсифицирует ионный обмен, повышая динамическую обменную емкость катионитов.

Целевые показатели катионитов по обменной емкости достигаются при синтезе сополимеров, содержащих 8-12% дивинилбензола.

Предлагаемый метод позволяет использовать технический дивинилбензол различной концентрации, в том числе пониженной (например, 43%-ный).

Сополимеры получали суспензионной полимеризацией в среде водно-солевого раствора картофельного крахмала, содержащей 20% хлористого натрия или аммония, или в среде водных растворов целлюлозы при соотношении органической и водной фаз 1:(3÷4) при 65-90°С и давлении 1,5-2,5 атм, развивающемся при нагревании смеси в герметизированном реакторе. В качестве инициатора полимеризации использовали перекись бензоила.

Гидролиз нитрильных групп осуществляли обработкой сополимеров 25%-ным раствором едкого натра при 103-106°С в течение 6-10 часов.

Определение статической обменной емкости катионитов (СОЕ) и динамической обменной емкости с заданным расходом регенерирующего вещества (ДОЕ) вели по методикам ГОСТ 20255-89.

Пример 1

1.1. Полимеризация смеси, содержащей 76% акрилонитрила, 8% дивинилбензола, 7,5% метакриловой кислоты и 15% (объемных) бутилацетата.

В лабораторный реактор объемом 1200 мл (рабочий объем 960 мл) помещали 720 мл 1%-ного раствора картофельного крахмала, содержащего 20% хлорида аммония. В нагретый до 50°С раствор загружали при перемешивании полимеризационную смесь состава: акрилонитрил 130,17 г; метакриловая кислота 12,84 г; технический дивинилбензол (концентрация 43,15% по ДВБ, 88,88% по сумме непредельных соединений) 31,75 г; перекись бензоила 3,5 г и бутилацетат 30,8 мл. Реактор герметизировали и его содержимое при перемешивании нагревали в течение 6 часов до достижения 90°С. После выдержки при этой температуре в течение 2 часов, охлаждения и разгерметизации реактора сополимер отделяли от маточника, промывали водой от крахмального раствора и отжимали от избытка влаги на вакуумном фильтре.

1.2. Гидролиз сополимера.

100 г сополимера с размером гранул 0,4-0,8 мм (в пересчете на сухой вес) помещали вместе с 500 мл 25%-го водного раствора гидроксида натрия в круглодонную колбу, обогреваемую на масляной бане. Температуру реакционной смеси постепенно, в течение 4-5 часов, поднимали до 103-106°С и выдерживали при этой температуре и непрерывном перемешивании в течение 6-8 часов. Образующийся аммиак через обратный холодильник отводили для поглощения водой в склянку Тищенко. Полученный катионит переводили в H+-форму обработкой 5%-ной соляной кислотой в промывной колонке.

Было получено 338 мл катионита (112,92 г в пересчете на сухой вес), имеющего следующие показатели качества:

СОЕ 10,8 мг-экв/г, 3,6 мг-экв/см3;

ДОЕ 2815 г-экв/м3;

Удельный объем 3 см3/г;

Осмотическая стабильность 100%.

Пример 2

2.1. Полимеризация смеси, содержащей 72,7% акрилонитрила, 10% дивинилбензола, 10% метакриловой кислоты и 30% (объемных) бутилацетата.

Состав полимеризационной смеси: акрилонитрил 112,85 г; метакриловая кислота 15,53 г; технический дивинилбензол (концентрация 57,67% по ДВБ, 99,95% по сумме непредельных соединений) 26,93 г; перекись бензоила 3 г и бутилацетат 55,3 мл. Условия полимеризации соответствовали описанным в примере 1.

2.2. Гидролиз сополимера.

100 г сополимера с размером гранул 0,4-0,8 мм (в пересчете на сухой вес) заливали 500 мл 25%-го водного раствора гидроксида натрия и нагревали в соответствии с условиями, указанными в примере 1.

Полученный катионит имел следующие свойства:

СОЕ 11,15 мг-экв/г, 3,85 мг-экв/см 3;

ДОЕ 2860 г-экв/м3;

Удельный объем 2,9 см3/г;

Осмотическая стабильность 99%.

Пример 3

3.1. Полимеризация смеси, содержащей 71,25% акрилонитрила, 12% дивинилбензола, 5% метакриловой кислоты и 20% (объемных) бутилацетата.

Состав полимеризационной смеси: акрилонитрил 117,79 г; метакриловая кислота 8,27 г; технический дивинилбензол (концентрация 47,5% по ДВБ, 94% по сумме непредельных соединений) 41,76 г; перекись бензоила 3,35 г и бутилацетат 39,5 мл.

Суспензионную полимеризацию проводили по примеру 1.

После рассева 100 г сополимера (в пересчете на сухой вес) с размером гранул 0,4-0,8 мм было направлено на гидролиз.

3.2. Гидролиз сополимера.

Гидролиз 100 г (в пересчете на сухой вес) сополимера с размером гранул 0,4-0,8 мм был проведен в условиях, приведенных в примере 1.

Получено 285 мл набухшего в воде катионита (118,2 г в пересчете на сухой вес).

Показатели качества катионита:

СОЕ 10,4 мг-экв/г, 4,24 мг-экв/см3;

ДОЕ 3316 г-экв/м 3;

Удельный объем 2,45 см3/г;

Осмотическая стабильность 98,7%.

Пример 4

4.1. Полимеризация смеси, содержащей 76,5% акрилонитрила, 12% дивинилбензола, 5% метакриловой кислоты и 40% (объемных) бутилацетата.

Состав полимеризационной смеси: акрилонитрил 108,88 г; метакриловая кислота 7,12 г; технический дивинилбензол (концентрация 63,36% по ДВБ, 97,88% по сумме непредельных соединений) 26,97 г; перекись бензоила 2,86 г, бутилацетат 68,3 мл.

Суспензионную полимеризацию проводили в условиях примера 1.

4.2. Гидролиз сополимера.

100 г сополимера с размером гранул 0,4-0,8 мм (в пересчете на сухой вес) гидролизовали по условиям примера 1. Получено 323,7 мл набухшего в воде катионита в Н+-форме (119,88 г в пересчете на сухой вес).

Катионит имел следующие свойства:

СОЕ 10,85 мг-экв/г, 4,02 мг-экв/см 3;

ДОЕ 2911 г-экв/м3;

Удельный объем 2,7 см3/г;

Осмотическая стабильность 99%.

В таблице приведены сравнительные характеристики катионитов, полученных по известному и предлагаемому способам:

Характеристики способа Прототип (пат. RU 2326139) Предлагаемый способ
Состав сополимеров, %: способ получения карбоксильных катионитов, патент № 2391356 способ получения карбоксильных катионитов, патент № 2391356
Акрилонитрил78-80 71-76,5
Метилметакрилат 5 -
Метакриловая кислота- 5-10
Дивинилбензол 9-12 8-12
Порообразователь Алкилбензин, авиационный керосинБутилацетат
Свойства катионитов: способ получения карбоксильных катионитов, патент № 2391356 способ получения карбоксильных катионитов, патент № 2391356
СОЕ, мг-экв/см3 2,5-2,63,6-4,24
ДОЕ, г-экв/м 31900-2200 2810-3316
Осмотическая стабильность, %100 99-100

Таким образом, предлагаемый способ, не снижая прочность катионитов, позволяет увеличить обменную емкость по СОЕ в 1,4-1,6 раза, а по ДОЕ в ~1,5 раза.

Скачать патент РФ Официальная публикация
патента РФ № 2391356

patent-2391356.pdf

Класс C08F220/44 акрилонитрил

способ синтеза сополимеров акрилонитрила (варианты) -  патент 2528395 (20.09.2014)
способ получения легкорегенерируемого ионита -  патент 2493915 (27.09.2013)
способ синтеза акрилонитрила из глицерина -  патент 2471774 (10.01.2013)
стабильный низковязкий полимер-полиол, имеющий гидроксильное число 35, и способ его получения -  патент 2423388 (10.07.2011)
способ получения пористых слабоосновных анионитов -  патент 2387673 (27.04.2010)
способ получения карбоксильного катионита -  патент 2326130 (10.06.2008)
способ получения низкоосновных анионитов -  патент 2323944 (10.05.2008)
дендритная макромолекула, способ ее получения -  патент 2109764 (27.04.1998)
способ очистки питьевой воды и способ получения бактерицидного средства для очистки воды (варианты) -  патент 2069641 (27.11.1996)

Класс C08F212/36 дивинилбензол

Класс C08F220/06 акриловая кислота; метакриловая кислота; их металлические или аммониевые соли

гетерогенная смесь полимеров и способ увеличения содержания наполнителя в листе бумаги или картона с ее использованием (варианты) -  патент 2521590 (27.06.2014)
полимерный материал для регулирования роста и развития растений -  патент 2515886 (20.05.2014)
полимер с солевыми группами и композиция противообрастающего покрытия, содержащая указанный полимер -  патент 2502765 (27.12.2013)
способ получения водорастворимых триметаллических солей сополимеров акриловой и метакриловой кислот -  патент 2470038 (20.12.2012)
эмульгирующие полимеры и их применение -  патент 2467984 (27.11.2012)
регулирование в способе получения абсорбирующих воду полимерных частиц в нагретой газовой фазе -  патент 2467020 (20.11.2012)
способ получения сшитого гидрофильного полимера, проявляющего свойства суперабсорбента -  патент 2467017 (20.11.2012)
анионный латекс в качестве носителя для биоактивных ингредиентов и способы его изготовления и применения -  патент 2448990 (27.04.2012)
амфолитный сополимер на основе кватернизованных азотсодержащих мономеров -  патент 2441029 (27.01.2012)
сополимер акриловой или метакриловой кислоты с их эфирами, функциональная добавка для цементных смесей и способ получения водных растворов сополимеров -  патент 2430931 (10.10.2011)
Наверх