оптический наноакселерометр

Классы МПК:G01P15/093 с помощью фотоэлектрического датчика
B82B1/00 Наноструктуры
Автор(ы):,
Патентообладатель(и):Соколов Сергей Викторович (RU),
Каменский Владислав Валерьевич (RU)
Приоритеты:
подача заявки:
2008-07-23
публикация патента:

Изобретение относится к измерительной технике и может быть использовано при решении задач навигации, управления, гравиметрии. Оптический наноакселерометр строится на основе оптических нановолокон и телескопических нанотрубок и состоит из источника постоянного оптического сигнала 1, оптического нановолоконного Y-разветвителя 21, двух выходных нановолоконных Y-разветвителей 2 i,i=2,3, двух оптических нановолоконных N-выходных разветвителей

3i,i=1,2, двух телескопических нанотрубок 4i,i=1,2, двух оптических N-входных нановолоконных объединителей обратной связи 5i,i=1,2 . Изобретение направлено на упрощение решения задачи измерения кажущегося ускорения и решения задачи наноразмерного исполнения устройства, которые возникают при разработке и создании навигационных систем, обеспечивающих обработку информации в тера- и гигагерцовом диапазонах, а также при измерении ускорения во время различных виброиспытаний и гравиметрических исследований. 1 ил. оптический наноакселерометр, патент № 2383026

оптический наноакселерометр, патент № 2383026

Формула изобретения

Оптический наноакселерометр, содержащий источник излучения, отличающийся тем, что в него введены источник постоянного оптического сигнала, два оптических нановолоконных N-выходных разветвителя, два выходных оптических нановолоконных Y-разветвителя, два оптических N-входных нановолоконных объединителя обратной связи, две телескопические нанотрубки - внутреннюю и внешнюю, выход источника постоянного оптического сигнала подключен ко входу оптического нановолоконного Y-разветвителя, первый выход которого подключен к входу первого оптического нановолоконного N-выходного Y-разветвителя, а второй выход подключен к входу второго оптического нановолоконного N-выходного Y-разветвителя, выходы первого оптического нановолоконного N-выходного Y-разветвителя оптически связаны со входами первого оптического нановолоконного N-входного объединителя обратной связи, а выходы второго оптического нановолоконного N-выходного Y-разветвителя оптически связаны со входами второго оптического N-входного нановолоконного объединителя обратной связи, телескопические нанотрубки расположены между вторыми выходами первого и второго выходных оптических нановолоконных Y-разветвителей по оси распространения их выходных оптических сигналов, в среднем (исходном) положении внутренняя нанотрубка разрывает оптические связи между выходами первого N-выходного оптического нановолоконного разветвителя и входами первого N-входного оптического нановолоконного объединителя обратной связи, а также оптические связи между выходами второго N-выходного оптического нановолоконного разветвителя и входами второго N-входного оптического нановолоконного объединителя обратной связи, выход первого оптического нановолоконного N-входного объединителя обратной связи подключен ко входу первого выходного оптического нановолоконного Y-разветвителя, а выход второго оптического нановолоконного N-входного объединителя обратной связи подключен ко входу второго выходного оптического нановолоконного Y-разветвителя, первый выход первого выходного оптического нановолоконного Y-разветвителя является выходом устройства «А-», а первый выход второго выходного оптического нановолоконного Y-разветвителя является выходом устройства «А+».

Описание изобретения к патенту

Изобретение относится к измерительной технике и может быть использовано при решении задач навигации, управления, гравиметрии.

Известны маятниковые акселерометры, предназначенные для измерения кажущегося ускорения, содержащие маятник (чувствительный элемент) и цепь обратной связи (датчик положения, усилитель, исполнительный элемент) [Командно-измерительные приборы /Под ред. Назарова Б.И. - М.: МО СССР, 1975].

Наиболее близким по техническому исполнению к предложенному устройству является оптический акселерометр [Патент № 2156979, РФ, Соколов СВ. и др.], содержащий источник излучения, два световода (оптических ответвления), оптический объединитель, кольцевой оптический волновод.

Недостатком данных устройств является сложность и невозможность наноразмерного исполнения.

Заявленное устройство направлено на упрощение решение задачи измерения кажущегося ускорения и решение задачи наноразмерного исполнения устройства.

Поставленная задача возникает при разработке и создании навигационных систем, обеспечивающих обработку информации в тера- и гигагерцовом диапазонах, а также при измерении ускорения во время различных виброиспытаний и гравиметрических исследований.

Заявленное устройство строится на основе оптических нановолокон, варианты технического исполнения которых описаны в [Оптика наноструктур / Под редакцией А.В.Федорова: СПб. «Недра», 2005 г.; Krenn J.R., Dereux A., Weeber J.C., et al. Squeezing the optical near-field zone by plasmon coupling of metal nanoparticles. Physical Review Letters, 1999, 82, 12, 2590], и телескопических нанотрубок, под которыми понимается пара вложенных одна в другую нанотрубок [Multiwalled Carbon Nanotubes as Gigahertz Oscillators / Quanshui Zheng, Qing Jiang // Phys. Rev. Lett. 88, 045503, 28 January, 2002].

Сущность изобретения состоит в том, что оптический наноакселерометр, содержащий источник излучения, отличается тем, что в него введены источник постоянного оптического сигнала, два оптических нановолоконных N-выходных разветвителя, два выходных оптических нановолоконных Y-разветвителя, два оптических N-входных нановолоконных объединителя обратной связи, две телескопические нанотрубки - внутреннюю и внешнюю, выход источника постоянного оптического сигнала подключен ко входу оптического нановолоконного Y-разветвителя, первый выход которого подключен к входу первого оптического нановолоконного N-выходного Y-разветвителя, а второй выход подключен к входу второго оптического нановолоконного N-выходного Y-разветвителя, выходы первого оптического нановолоконного N-выходного Y-разветвителя оптически связаны со входами первого оптического нановолоконного N-входного объединителя обратной связи, а выходы второго оптического нановолоконного N-выходного Y-разветвителя оптически связаны со входами второго оптического N-входного нановолоконного объединителя обратной связи, телескопические нанотрубки расположены между вторыми выходами первого и второго выходных оптических нановолоконных Y-разветвителей по оси распространения их выходных оптических сигналов, в среднем (исходном) положении внутренняя нанотрубка разрывает оптические связи между выходами первого N-выходного оптического нановолоконного разветвителя и входами первого N-входного оптического нановолоконного объединителя обратной связи, а также оптические связи между выходами второго N-выходного оптического нановолоконного разветвителя и входами второго N-входного оптического нановолоконного объединителя обратной связи, выход первого оптического нановолоконного N-входного объединителя обратной связи подключен ко входу первого выходного оптического нановолоконного Y-разветвителя, а выход второго оптического нановолоконного N-входного объединителя обратной связи подключен ко входу второго выходного оптического нановолоконного Y-разветвителя, первый выход первого выходного оптического нановолоконного Y-разветвителя является выходом устройства «А-», а первый выход второго выходного оптического нановолоконного Y-разветвителя является выходом устройства «А+».

На чертеже представлена функциональная схема оптического наноакселерометра.

Устройство состоит из источника постоянного оптического сигнала 1, оптического нановолоконного Y-разветвителя 21, двух выходных оптических нановолоконных Y-разветвителей 2i, i=2,3, двух оптических нановолоконных N-выходных разветвителей 3i, i=1,2, двух телескопических нанотрубок 4i, i=1,2, (4 1 - внутренняя нанотрубка, 42 - внешняя нанотрубка), двух оптических N-входных нановолоконных объединителей обратной связи 5i, i=1,2.

Выходами устройства являются первый выход первого выходного оптического нановолоконного Y-разветвителя 22 («А-») и первый выход второго выходного оптического нановолоконного Y-разветвителя 23 («А+»).

Выход источника постоянного оптического сигнала 1 подключен ко входу оптического нановолоконного Y-разветвителя 21 , первый выход которого подключен к входу первого оптического нановолоконного N-выходного Y-разветвителя 31, а второй выход подключен к входу второго оптического нановолоконного N-выходного Y-разветвителя 32. Выходы первого оптического нановолоконного N-выходного Y-разветвителя 31 оптически связаны со входами первого оптического нановолоконного N-входного объединителя обратной связи 51, а выходы второго оптического нановолоконного N-выходного Y-разветвителя 32 оптически связаны со входами второго оптического N-входного нановолоконного объединителя обратной связи 52.

Телескопические нанотрубки 41, 42 расположены между вторыми выходами первого и второго выходных оптических нановолоконных Y-разветвителей 22 и 23 по оси распространения их выходных оптических сигналов.

В среднем (исходном) положении внутренняя нанотрубка 41 разрывает оптические связи между выходами первого N-выходного оптического нановолоконного разветвителя 31 и входами первого N-входного оптического нановолоконного объединителя обратной связи 51, а также оптические связи между выходами второго N-выходного оптического нановолоконного разветвителя 32 и входами второго N-входного оптического нановолоконного объединителя обратной связи 52.

Выход первого оптического нановолоконного N-входного объединителя обратной связи 5 1 подключен ко входу первого выходного оптического нановолоконного Y-разветвителя 22, а выход второго оптического нановолоконного N-входного объединителя обратной связи 52 подключен ко входу второго выходного оптического нановолоконного Y-разветвителя 23.

Устройство работает следующим образом.

С выхода источника постоянного оптического сигнала 1 сигнал с интенсивностью 2·К усл.ед., пройдя через оптический нановолоконный Y-разветвитель 21 (и уменьшившись в два раза по интенсивности), поступает на входы N-выходных оптических нановолоконных разветвителей 31 и 32, с каждого выхода которых снимается постоянный оптический сигнал с интенсивностью K/N усл.ед. (N - количество выходов N-выходных оптических нановолоконных разветвителей 31 и 3 2).

При отсутствии ускорения устройство находится в исходном (начальном) состоянии - внутренняя нанотрубка 41 находится в среднем (исходном) положении, на входах N-входных оптических нановолоконных объединителей обратной связи 51, 52 сигнал отсутствует.

Под действием сил инерции внутренняя трубка 41 будет перемещаться в направлении, противоположном направлению кажущегося ускорения объекта (при этом необходимо иметь в виду, что минимально необходимая сила для перемещения нанотрубки, вес которой равен оптический наноакселерометр, патент № 2383026 10-15-10-16 г, составляет аттоньютоны [Multiwalled Carbon Nanotubes as Gigahertz Oscillators / Quanshui Zheng, Qing Jiang // Phys. Rev. Lett. 88, 045503, 28 January, 2002]), следовательно, минимальное ускорение объекта, необходимое для перемещения нанотрубки (нижняя граница диапазона измерения ускорений), составляет оптический наноакселерометр, патент № 2383026 1 м/с2).

Пусть ускорение объекта направлено вдоль оси ОХ, тогда на внутреннюю нанотрубку 4 1 будет действовать разность сил - силы инерции Fu =-mW (m - масса нанотрубки, W - проекция кажущегося ускорения на ось ОХ) и силы светового давления Foc (см. фиг.1), создаваемой оптическим потоком обратной связи и пропорциональной интенсивности оптического потока Ioc на втором выходе второго выходного оптического нановолоконного Y-разветвителя 23: Foc=Z Ioc, где Z - коэффициент пропорциональности.

Внутренняя нанотрубка 4 1 из среднего положения начнет перемещаться влево

(Fuоптический наноакселерометр, патент № 2383026 Foc), интенсивность оптического потока I oc на выходе второго N-входного оптического нановолоконного объединителя обратной связи 52 начнет увеличиваться пропорционально величине перемещения «X» внутренней нанотрубки 41. Т.к. длины правой и левой частей внутренней нанотрубки 41 составляют единицы микрон, а диаметр оптических нановолокон нановолоконного объединителя - единицы нанометров, то изменение величины перемещения «X» для ясности последующего изложения можно считать непрерывным (дискретный характер изменения «X» не вносит никаких принципиальных ограничений в принцип действия устройства) - интенсивность оптического потока на выходе второго N-входного оптического нановолоконного объединителя обратной связи 52 будет равна «К·Х» (при этом интенсивность оптического потока на выходе первого оптического нановолоконного объединителя обратной связи 5 1 по-прежнему будет равна нулю). Оптический сигнал с интенсивностью Iос=К·Х поступает далее на вход второго выходного оптического нановолоконного Y-разветвителя 23, где, разделившись на два, проходит на выход устройства «А+», а также создает давление на внутреннюю нанотрубку 41 . Т.е. оптический сигнал с интенсивностью «К·Х/2» на втором выходе оптического нановолоконного Y-разветвителя 2 3 формирует сигнал отрицательной обратной связи, препятствующий движению внутренней нанотрубки 41 влево, - скорость ее движения уменьшается, изменение величины перемещения «X» замедляется.

По окончании переходного процесса (на момент остановки внутренней нанотрубки 41, при этом Fu=Foc) величина перемещения «X» будет равна

X=2Wm/(KZ)

а интенсивность выходного оптического сигнала наноакселерометра Iвых на первом выходе оптического нановолоконного Y-разветвителя 23 «А+», соответственно

I выx=W(m/Z),

т.е. будет пропорциональна проекции кажущегося ускорения W на ось ОХ с коэффициентом m/Z.

(Время переходного процесса определяется массой внутренней нанотрубки 41, силой трения при ее движении, интенсивностью «К» постоянного оптического сигнала, и составляет оптический наноакселерометр, патент № 2383026 10-9-10-10 с).

Аналогично происходит процесс измерения ускорения в отрицательном направлении оси ОХ (движение внутренней нанотрубки 41 при этом происходит уже вправо).

Простота данного оптического наноакселерометра, широкий диапазон измерения ускорений - от 1 м/с2 до 106 м/с2 (что определяется возможностью осцилляции внутренней нанотрубки с частотой 10 7 Гц [Multiwalled Carbon Nanotubes as Gigahertz Oscillators / Quanshui Zheng, Qing Jiang // Phys. Rev. Lett. 88, 045503, 28 January, 2002]), а также возможность наноразмерного исполнения делают его весьма перспективным при разработке и создании навигационных систем, а также аппаратуры для виброиспытаний и гравиметрических исследований.

Класс G01P15/093 с помощью фотоэлектрического датчика

устройство для измерения виброускорений -  патент 2454645 (27.06.2012)
способ измерения ускорения при микро- и наносмещениях -  патент 2420746 (10.06.2011)
механолюминесцентный датчик удара -  патент 2305847 (10.09.2007)
датчик ускорения -  патент 2280876 (27.07.2006)
жидкостной акселерометр -  патент 2253872 (10.06.2005)
маятниковый акселерометр -  патент 2240566 (20.11.2004)
жидкостной акселерометр -  патент 2236015 (10.09.2004)

Класс B82B1/00 Наноструктуры

многослойный нетканый материал с полиамидными нановолокнами -  патент 2529829 (27.09.2014)
материал заменителя костной ткани -  патент 2529802 (27.09.2014)
нанокомпозитный материал с сегнетоэлектрическими характеристиками -  патент 2529682 (27.09.2014)
катализатор циклизации нормальных углеводородов и способ его получения (варианты) -  патент 2529680 (27.09.2014)
способ определения направления перемещения движущихся объектов от взаимодействия поверхностно-активного вещества со слоем жидкости над дисперсным материалом -  патент 2529657 (27.09.2014)
способ формирования наноразмерных структур -  патент 2529458 (27.09.2014)
способ бесконтактного определения усиления локального электростатического поля и работы выхода в нано или микроструктурных эмиттерах -  патент 2529452 (27.09.2014)
способ изготовления стекловидной композиции -  патент 2529443 (27.09.2014)
комбинированный регенеративный теплообменник -  патент 2529285 (27.09.2014)
способ изготовления тонкопленочного органического покрытия -  патент 2529216 (27.09.2014)
Наверх