способ очистки триоксида молибдена

Классы МПК:C01G39/02 оксиды; гидроксиды
Автор(ы):, , , , ,
Патентообладатель(и):Учреждение Российской Академии Наук Институт химии высокочистых веществ РАН (ИХВВ РАН) (RU)
Приоритеты:
подача заявки:
2008-11-18
публикация патента:

Изобретение может быть использовано для получения триоксида молибдена высокой степени чистоты, используемого при синтезе теллуритных стекол, являющихся перспективными для изготовления активных и пассивных элементов волоконной и интегральной ИК-оптики. Для очистки исходный триоксид молибдена прокаливают в вакууме при 550-580°С. Прокаленный продукт очищают испарением в режиме сублимации в вакууме при температуре 690-780°С. Очищенный продукт осаждают на подложке, температура которой составляет 500-550°С. Изобретение позволяет повысить чистоту триоксида молибдена по примесям металлов до уровня менее 10-5 мас.% и получить триоксид молибдена с выходом 80-85%. 2 з.п. ф-лы, 2 табл.

Формула изобретения

1. Способ очистки триоксида молибдена испарением, отличающийся тем, что перед очисткой триоксид молибдена прокаливают в вакууме при 550-580°С, очистку прокаленного продукта ведут испарением в режиме сублимации в вакууме при температуре 690-780°С, а очищенный продукт осаждают на подложке, температура которой составляет 500-550°С.

2. Способ по п.1, отличающийся тем, что очистку прокаленного продукта ведут в безмасляном вакууме при 730-750°С.

3. Способ по п.1, отличающийся тем, что очищенный продукт осаждают на подложке, температура которой составляет 510-530°С.

Описание изобретения к патенту

Заявляемое изобретение относится к технологии неорганических материалов, в частности оксидов металлов, и касается разработки способа получения высокочистого триоксида молибдена, используемого при синтезе теллуритных стекол, являющихся перспективными для изготовления активных и пассивных элементов волоконной и интегральной ИК-оптики.

Имеющийся на отечественном рынке триоксид молибдена марки «ЧДА», выпускаемый по ТУ 6-09-4471-77, не удовлетворяет требованиям волоконной оптики. Триоксид молибдена более высокой чистоты у нас в стране не производится.

Известны химические способы очистки триоксида молибдена, которые заключаются в связывании примесей специально подобранными реагентами в такие химические соединения, которые сравнительно легко отделяются от основного вещества (см., например, патент США № 4762695).

В упомянутом источнике описан способ получения высокочистого триоксида молибдена переводом молибденсодержащего сырья в кислый водный раствор с перекисью водорода, очисткой этого раствора на ионообменных смолах с последующим его упариванием.

Содержание примесей радиоактивных элементов в полученном оксиде молибдена ниже 0,5 ppb, примесей Fe, Ni, Cr ниже 0,1 ppm.

Известный способ является многостадийным, требует большого количества высокочистых реактивов, в том числе тщательной отмывки ионообменной смолы.

Известен способ получения чистого триоксида молибдена возгонкой его из молибденовых концентратов. В качестве исходного концентрата используются огарки с содержанием молибдена от 48 до 56%, процесс испарения ведется при 900-1100°C в атмосфере воздуха. Возогнанный триоксид молибдена имеет чистоту 99,975%, что на 2-3 порядка выше исходного, в том числе по примесям меди и железа. Обеспечивая получение триоксида молибдена с высокой производительностью без затрат дополнительных химических реагентов по короткой технологической схеме, известный способ имеет недостаточную степень очистки триоксида молибдена, связанную с использованием в качестве исходного сырья огарка, высоких температур испарения и воздуха в качестве атмосферы (см. в книге Зеликман А.Н. Металлургия редких металлов, М., Металлургия, 1978, с.359). Упомянутый способ взят в качестве прототипа.

Задачей, на решение которой направлено заявляемое изобретение, является разработка способа получения высокочистого триоксида молибдена, пригодного для использования в качестве исходного материала при изготовлении теллуритных стекол для волоконной оптики.

Эта задача решается за счет того, что в способе очистки триоксида молибдена испарением согласно заявляемому изобретению триоксид молибдена помещают в тигель, выполненный из инертного по отношению к триоксиду молибдена материалу, и прокаливают при 550 - 580°C, очистку прокаленного продукта ведут испарением в режиме сублимации в вакууме при температуре 690-780°C, очищенный продукт осаждают на подложке, температура которой 500-550°C.

Предпочтительно сублимацию прокаленного продукта вести в безмасляном вакууме при 730-750°C. В безмасляном вакууме триоксид молибдена более эффективно освобождается от летучих, в том числе углеродсодержащих, примесей, а проведение сублимации при указанной температуре предпочтительно, поскольку скорость испарения уже достаточно высокая для обеспечения высокой производительности, а коэффициенты разделения основа - примеси еще не ухудшаются из-за большой скорости испарения (см.табл.1).

Предпочтительно температуру подложки для осаждения триоксида молибдена поддерживать 510-530°C, что позволяет повысить коэффициент извлечения продукта из пара и использовать дополнительную ступень очистки от более летучих примесей.

Триоксид молибдена, полученный по предлагаемому способу, по данным спектрального анализа, содержит примеси металлов <n·10-5 мас.%, что позволяет использовать его в качестве исходного материала при синтезе теллуритных стекол. Выход по триоксиду молибдена составляет 80-85%.

Новыми отличительными признаками заявляемого способа является то, что очистке подвергают триоксид молибдена, предварительно прокаленный при 550-580°С в вакууме, очистку ведут испарением в режиме сублимации в вакууме при температуре 690-780°C, а очищенный триоксид молибдена выделяют на подложке, имеющей температуру 500-550°C. Для получения высокочистого продукта исходный триоксид молибдена прокаливают в тигле, выполненном из инертного по отношению к триоксиду молибдена материалу (платина, золото, и др.), а очищенный продукт осаждают на подложке из чистого кварцевого стекла или другого инертного материала.

Опытным путем было установлено, что прокаливание триоксида молибдена при 550-580°C обеспечивает очистку диоксида теллура от летучих примесей. При температуре менее 550°C реализуется низкая степень очистки от более летучих селена, мышьяка, ванадия и углеродсодержащих примесей, а при температуре выше 580°C возрастают потери продукта вследствие его возгонки.

Опытным путем было установлено, что проведение сублимации в вакууме при температуре 690-780°C обеспечивает высокую эффективность очистки. Наличие вакуума позволяет получить высокую скорость испарения и производительность процесса. При температуре ниже 690°C скорость испарения недостаточна для практических целей, а при повышении температуры выше 780°С снижаются коэффициенты разделения примесь - основа в 2-3 и более раза.

Опытным путем было установлено, что при температуре подложки менее 500°С происходит конденсация нестехиометричного окисла молибдена, обедненного кислородом (например, Mo8O23, Mo4O11), имеющего более темный цвет, что непригодно для его использования, а при температуре подложки более 550°С понижается выход продукта на 10 и более процентов.

Таким образом упомянутые отличительные признаки являются существенными, так как каждый из них необходим, а вместе они достаточны для решения поставленной задачи - получение высокочистого триоксида молибдена, пригодного для синтеза теллуритных стекол.

Пример

В платиновый тигель помещают навеску 60 г исходного триоксида молибдена квалификации «ЧДА» и прокаливают в безмасляном вакууме ~10-3 мм рт.ст. при 560°C для удаления легколетучих примесей - оксидов селена и мышьяка, серы, углеродсодержащих примесей, сорбированной и химически связанной воды. Температуру кварцевой подложки (конденсатора) при этом поддерживают ~600°С. После прокаливания температуру тигля повышают до 750°C и начинают процесс сублимации, температуру конденсатора понижают до 520°C. Когда в тигле остается ~10% от первоначальной загрузки, процесс прекращают. Кварцевый реактор охлаждают, напускают в него очищенный кислород и конденсатор с осадком сублимированного MoO3 извлекают. Вес осадка 49,2 г, что составляет 82% от загрузки. Цвет сублимата - легко зеленоватого оттенка (цвет стехиометричного способ очистки триоксида молибдена, патент № 2382736 -MoO3). Рентгенофазовый анализ сублимата также не выявил наличия фаз, кроме способ очистки триоксида молибдена, патент № 2382736 -MoO3.

Результаты спектрального анализа очищенного триоксида молибдена представлены в табл.2. Из табл.2 видно, что содержание таких примесей, как K, Mg, Fe, Cu, снижено более чем на 2-3 порядка, a Na - более чем на 5 порядков. Содержание примесей переходных металлов (Mn, Fe, Cu, Cr, Ni, Co, V), лимитирующих оптические потери в теллуритных стеклах в диапазоне 1-4 мкм, в MoO3 находится на уровне <1·10 -5 мас.%.

Таблица 1
Значения идеального и экспериментального коэффициента разделения тв(ж)-пар для систем на основе оксидов элементов (t=750°C)
оксиды p, атм (T=1023 K) способ очистки триоксида молибдена, патент № 2382736оснприм способ очистки триоксида молибдена, патент № 2382736 эксп 750°С
способ очистки триоксида молибдена, патент № 2382736 -MoO3 0,22·10-2 1способ очистки триоксида молибдена, патент № 2382736
способ очистки триоксида молибдена, патент № 2382736 -Mn2O3 <10-7 >2·104 >7
FeO способ очистки триоксида молибдена, патент № 2382736 -Fe2O3 <10-6 >2·103 >150
СO3О4 <10-6 >2·103 способ очистки триоксида молибдена, патент № 2382736
CuO7,89·10 -5 p(Cu)<10-7 >2·104 >1000
NiO<10-7 >2·10 4способ очистки триоксида молибдена, патент № 2382736
Cr2O3 <10-7 >2·104 способ очистки триоксида молибдена, патент № 2382736
V2O5 2.171000 (1/способ очистки триоксида молибдена, патент № 2382736 )способ очистки триоксида молибдена, патент № 2382736
K2O<10 -5>2·10 2способ очистки триоксида молибдена, патент № 2382736
Na2O 6,89·10-7 >3·103 >25000
PbO1,50·10 -5147 способ очистки триоксида молибдена, патент № 2382736
As2O5 0,33150 (1/способ очистки триоксида молибдена, патент № 2382736 )способ очистки триоксида молибдена, патент № 2382736
Sb2O3 1,6·10-4 13,75способ очистки триоксида молибдена, патент № 2382736
Bi2O3 4,09·10-7 >5·103 способ очистки триоксида молибдена, патент № 2382736
SeO2 8·10-3 3,6 (1/способ очистки триоксида молибдена, патент № 2382736 )способ очистки триоксида молибдена, патент № 2382736
TeO2 3,64·10-4 6,04способ очистки триоксида молибдена, патент № 2382736

способ очистки триоксида молибдена, патент № 2382736

Класс C01G39/02 оксиды; гидроксиды

сложный оксид молибдена и способ его получения -  патент 2446106 (27.03.2012)
порошок moo2, способы изготовления пластины из порошка moo2 (их варианты), элемент и способ изготовления тонкой пленки из нее, способ распыления с применением указанной пластины -  патент 2396210 (10.08.2010)
cпособ получения кислородсодержащих молибдованадофосфорных гетерополикислот -  патент 2373153 (20.11.2009)
твердый раствор на основе оксида молибдена, способ его получения и применение в качестве магнитного материала -  патент 2356840 (27.05.2009)
способ получения диоксида молибдена -  патент 2354726 (10.05.2009)
способ получения трехокиси молибдена и устройство для его осуществления -  патент 2312067 (10.12.2007)
способ управления окислением молибденита под давлением в автоклаве -  патент 2304560 (20.08.2007)
способ переработки молибденсодержащего сырья -  патент 2281914 (20.08.2006)
способ использования побочных продуктов и отходов гидрометаллургического производства -  патент 2180012 (27.02.2002)
Наверх