способ заполнения углеродных нанотрубок водородом

Классы МПК:B82B3/00 Изготовление или обработка наноструктур
Автор(ы):, ,
Патентообладатель(и):Учреждение Российской академии наук ИНСТИТУТ ФИЗИКИ ТВЕРДОГО ТЕЛА РАН (RU)
Приоритеты:
подача заявки:
2008-09-24
публикация патента:

Изобретение относится к области обработки наноструктур. Сущность изобретения: в способе заполнения водородом углеродных нанотрубок, прошедших термохимическую активацию в парах сульфида цинка, заполнение проводят при температуре 25°С в течение 24 часов под давлением водорода 78-80 атм. Техническим результатом изобретения является увеличение количества водорода, запасаемого в нанотрубках. 1 табл.

Формула изобретения

Способ заполнения водородом углеродных нанотрубок, прошедших термохимическую активацию в парах сульфида цинка, под давлением водорода при температуре 25°С в течение 24 ч, отличающийся тем, что заполнение проводится под давлением водорода 78-80 атм.

Описание изобретения к патенту

Изобретение относится к области обработки наноструктур.

Исследования углеродных нанотрубок (УНТ) как перспективных материалов-аккумуляторов водорода показывают, что важными факторами, определяющими количество водорода, запасаемого в УНТ, являются условия заполнения трубок водородом (температура, время и давление). С экономической точки зрения целесообразны невысокие температуры и давления при относительно небольшом времени заполнения.

Известен способ заполнения водородом УНТ, термохимически активированных обработкой в парах сульфида цинка [Патент РФ № 2296046, опубл. 27.03.2007 г., бюл.9] - прототип. Способ изложен в описании изобретения, в примере, и состоит в заполнении УНТ водородом под давлением в 100 атм при температуре 25°С в течение 24 часов. Параметры такого процесса полностью соответствуют критерию экономической целесообразности. Недостатком способа является низкое содержание водорода в УНТ, не превышающее 4,1% (мас.).

Задачей настоящего изобретения является увеличение количества водорода, запасаемого при температуре 25°С за 24 часа в углеродных нанотрубках, прошедших термохимическую активацию в парах сульфида цинка.

Эта задача решается в предлагаемом способе заполнения углеродных нанотрубок водородом путем проведения процесса под давлением 78-80 атм.

Способ позволяет запасать в УНТ от 4,9 до 5,3% (мас.) водорода. Такое количество запасенного водорода не может быть объяснено физической адсорбцией водорода, а химическое взаимодействие его с УНТ при комнатной температуре маловероятно. В условиях предлагаемого способа предположительно происходит образование водородных кластеров между слоями УНТ, прошедших термохимическую активацию в парах сульфида цинка.

Параметры процесса выбраны экспериментально. При давлениях водорода ниже 78 и выше 80 атм количество водорода, запасенного в УНТ, резко падает, что подтверждается результатами, представленными в таблице.

Можно полагать, что при давлениях водорода ниже 78 атм не происходит образование водородных кластеров или их содержание мало. При давлениях водорода выше 80 атм вероятно происходит быстрое разрушение кластеров из-за нарушения структуры стенок УНТ, имеющих, вследствие взаимодействия с парами сульфида цинка в процессе термохимической активации, большее содержание оборванных связей в сравнении с нанотрубками, активированными другими методами или не подвергавшимися активации.

Таблица
Давление Н2 в процессе заполнения УНТ, атм Количество Н2, запасенного в УНТ, % (мас.)
1. 300,8±0,7
2. 401,1±0,7
3. 501,4±0,7
4. 601,9±0,7
5. 702,4±0,7
6. 753,1±0,7
7. 773,8±0,7
8. 784,9±0,7
9. 795,1±0,7
10. 805,3±0,7
11. 814,2±0,7
12. 853,6±0,7
13. 903,4±0,7
14. 1003,3±0,7

Пример 1:

УНТ, термохимически активированные в парах сульфида цинка, заполняют водородом под давлением 78 атм, при температуре 25°С в течение 24 часов. Затем измеряют волюметрическим методом количество водорода, выделившегося из УНТ при прогреве нанотрубок до 300°С. Полученное значение принимают за количество водорода, запасенное УНТ в процессе заполнения. Вычисленное из этих данных содержание водорода, запасенного в УНТ, составляет 4,9±0,7% (мас.).

Пример 2:

УНТ, термохимически активированные в парах сульфида цинка, заполняют водородом под давлением 79 атм, при температуре 25°С в течение 24 часов. Затем измеряют волюметрическим методом количество водорода, выделившегося из УНТ при прогреве нанотрубок до 300°С. Полученное значение принимают за количество водорода, запасенное УНТ в процессе заполнения. Вычисленное из этих данных содержание водорода, запасенного в УНТ, составляет 5,1±0,7% (мас.).

Пример 3:

УНТ, термохимически активированные в парах сульфида цинка, заполняют водородом под давлением 80 атм, при температуре 25°С в течение 24 часов. Затем измеряют волюметрическим методом количество водорода, выделившегося из УНТ при прогреве нанотрубок до 300°С. Полученное значение принимают за количество водорода, запасенное УНТ в процессе заполнения. Вычисленное из этих данных содержание водорода, запасенного в УНТ, составляет 5,3±0,7% (мас.).

Класс B82B3/00 Изготовление или обработка наноструктур

способ комбинированной интенсивной пластической деформации заготовок -  патент 2529604 (27.09.2014)
многослойный композиционный материал для защиты от электромагнитного излучения -  патент 2529494 (27.09.2014)
способ функционализации углеродных наноматериалов -  патент 2529217 (27.09.2014)
нанокомпонентная энергетическая добавка и жидкое углеводородное топливо -  патент 2529035 (27.09.2014)
способ получения насыщенных карбоновых кислот -  патент 2529026 (27.09.2014)
способ получения катализатора для процесса метанирования -  патент 2528988 (20.09.2014)
способ модифицирования углеродных нанотрубок -  патент 2528985 (20.09.2014)
полимерный медьсодержащий композит и способ его получения -  патент 2528981 (20.09.2014)
композиции матриксных носителей, способы и применения -  патент 2528895 (20.09.2014)
полимерное электрохромное устройство -  патент 2528841 (20.09.2014)
Наверх