электронно-ионный источник

Классы МПК:H01J3/04 ионные пушки 
Автор(ы):,
Патентообладатель(и):Учреждение Российской академии наук Институт физики прочности и материаловедения Сибирского отделения РАН (ИФПМ СО РАН) (RU)
Приоритеты:
подача заявки:
2008-05-19
публикация патента:

Изобретение относится к области получения электронных и ионных пучков и может быть использовано в ускорительной технике. Электронно-ионный источник содержит эмиттерный катод с эмиссионным отверстием и расположенный против него второй катод, анод, систему вытягивания и систему электропитания. Отличительной особенностью нового источника является то, что полый катод является биметаллическим и состоит из двух частей: внутренней ферромагнитной части и наружной высокотеплопроводящей части, выполненной по всей окружности катода в форме жестких ребер. Технический результат: интенсивный теплоотвод от биметаллического полого катода. 2 з.п. ф-лы, 1 ил. электронно-ионный источник, патент № 2378732

электронно-ионный источник, патент № 2378732

Формула изобретения

1. Электронно-ионный источник с продольным извлечением частиц из отражательного разряда с холодными катодами, содержащий эмитерный катод с эмиссионным отверстием и расположенный против него второй полый катод, анод, систему вытягивания и систему электропитания, отличающийся тем, что полый катод выполнен биметаллическим и состоит из наружной высокотеплопроводящей части и внутренней ферромагнитной части.

2. Электронно-ионный источник по п.1, отличающийся тем, что наружная высокотеплопроводящая часть полого катода выполнена из материала с высокой теплопроводностью, например, меди, серебра, алюминия.

3. Электронно-ионный источник по п.1 или 2, отличающийся тем, что наружная высокотеплопроводящая часть полого катода выполнена в форме, например, радиатора охлаждения.

Описание изобретения к патенту

Изобретение относится к области получения электронных и ионных пучков и может быть использовано в ускорительной технике.

Известен электронно-ионный источник с продольным извлечением частиц из отражательного разряда с холодными катодами, содержащий эмитерный катод с эмиссионным отверстием и расположенный против него второй катод, анод, систему вытягивания и систему электропитания (SU 456322 А1, 1973).

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного источника, относится то, что в известном источнике при длительном режиме работы и повышенной мощности электронного луча происходит значительный разогрев устья полого катода из-за недостаточного теплоотвода до температуры выше точки Кюри (Т=727°С), что приводит к ферропарамагнитному переходу последнего и изменению конфигурации магнитного поля в разрядной камере. Кроме того, при переходе температуры ферромагнитного материала через точку Кюри коэффициент распыления его резко возрастает. Все перечисленные факторы неблагоприятно сказываются на условиях горения разряда и как следствие эмиссионных характеристиках электронного источника.

Наиболее близким источником того же назначения к заявляемому изобретению по совокупности признаков является электронно-ионный источник, снабженный керамическими элементами с эмиссионными отверстиями в эмиттерном катоде и полом катоде, кроме того источник содержит также анод, систему вытягивания и систему электропитания (RU 2209483 С2 2001).

Данный источник принят за прототип. К причинам, препятствующим достижению указанного ниже технического результата при использовании известного источника, принятого за прототип, относится то, что в известном источнике при длительном режиме работы и повышенной мощности электронного луча увеличивается температура керамического элемента, расположенного в устье полого катода, приводящая к нагреву ферромагнитной части полого катода выше точки Кюри (Т=727°С). В результате ферропарамагнитного перехода материала полого катода происходит изменение конфигурации магнитного поля в разрядной камере, приводящее к ухудшению условий горения разряда и как следствие эмисионных характеристиках электронного источника.

Задачей изобретения является повышение стабильности работы источника во времени при сохранении постоянства эмиссионных характеристик электронно-ионного источника и геометрических характеристик пучка.

Технический результат при осуществлении заявляемого изобретения достигается за счет интенсивного теплоотвода от биметаллического полого катода, состоящего из внутренней ферромагнитной и наружной высокотеплопроводящей части.

Указанный технический результат при осуществлении изобретения достигается следующим образом: как и известный источник, заявляемый электронно-ионный источник содержит эмиттерный катод с эмиссионным отверстием и расположенный против него второй катод, анод, систему вытягивания и систему электропитания.

Отличительной особенностью нового источника является то, что полый катод является биметаллическим и состоит из двух частей: внутренней ферромагнитной и наружной высокотеплопроводящей части.

Кроме того, наружная высокотеплопроводящая часть полого катода выполнена из материала с высокой теплопроводностью, например меди, серебра, алюминия.

Кроме того, наружная высокотеплопроводящая часть полого катода выполнена в форме, например, радиатора охлаждения.

Указанная конструкция полого катода не позволяет увеличиваться температуре его устья выше точки Кюри, что сохраняет постоянство эмиссионных характеристик электронно-ионного источника.

На чертеже изображен заявляемый электронно-ионный источник.

Источник содержит холодный эмиттерный катод 1, полый катод с внутренней ферромагнитной частью 2, цилиндрический анод 3 и извлекающий электрод 4. Магнитное поле между катодами обеспечивается постоянным магнитом 5. К внутренней ферромагнитной части 2 полого катода присоединена наружная часть 6, выполненная из материала с высокой теплопроводностью, например меди, серебра, алюминия. При этом наружная высокотеплопроводящая часть полого катода выполнена по всей окружности катода в форме жестких ребер подобно радиатору охлаждения.

Источник работает следующим образом.

При подаче напряжения между катодами 1, 2 и анодом 3 зажигается отражательный разряд. С увеличением тока разряда, когда протяженность области катодного падения потенциала становится меньше радиуса апертуры полости в катоде 2, плазма проникает в полость и зажигается разряд с полым катодом. Интенсивное охлаждение полого катода за счет медной части повышает стабильность параметров электронно-ионного источника во времени.

Класс H01J3/04 ионные пушки 

способ и устройство модифицирования поверхности осесимметричных изделий -  патент 2504040 (10.01.2014)
плазменный источник ионов -  патент 2371803 (27.10.2009)
источник ионов с мультипольным магнитным полем в полом катоде -  патент 2352013 (10.04.2009)
комбинированный источник ионов с двухступенчатым электрическим разрядом -  патент 2248641 (20.03.2005)
источник ионов с эффектом полого катода -  патент 2231163 (20.06.2004)
мультикасповый источник ионов с двухступенчатым электрическим разрядом -  патент 2214016 (10.10.2003)
электронно-ионный источник -  патент 2209483 (27.07.2003)
ионный источник -  патент 2205467 (27.05.2003)
источник ионов -  патент 2180146 (27.02.2002)
дуоплазматрон с малым потоком газа на выходе -  патент 2170988 (20.07.2001)
Наверх