биметаллический катализатор окислительной очистки газов

Классы МПК:B01J23/656 марганец, технеций или рений
B01J23/889 марганец, технеций или рений
B01J23/89 в сочетании с благородными металлами
Автор(ы):, , , ,
Патентообладатель(и):Гребнев Вениамин Владимирович (RU),
Мальчиков Геннадий Данилович (RU)
Приоритеты:
подача заявки:
2008-04-14
публикация патента:

Изобретение относится к области защиты окружающей среды от токсичных компонентов отходящих газов, а именно к каталитической окислительной очистке отходящих газов, содержащих углеводороды. Сущность изобретения заключается в том, что предлагаемый катализатор, содержащий благородный металл и оксидированную нержавеющую сталь, дополнительно содержит рений в количестве 0,05-0,25 мас.% в сочетании с платиной или палладием в том же интервале концентраций, оксидированную нержавеющую сталь остальное. Восстановление платины или палладия и рения аммиаком протекает при повышенной температуре при взаимодействии их соединений-предшественников по уравнению реакции: 3[Pt(NH 3)4]Cl2+6NH4ReO4 +6KOHбиметаллический катализатор окислительной очистки газов, патент № 2378049 3Pt°+6Re°+8N2биметаллический катализатор окислительной очистки газов, патент № 2378049 +2NH3биметаллический катализатор окислительной очистки газов, патент № 2378049 +6KCl+30H2O. Данный катализатор обеспечивает высокую степень очистки при низких температурах, высокую теплопроводность, механическую прочность при низкой себестоимости. 4 табл.

Формула изобретения

Биметаллический катализатор окислительной очистки газов, содержащий металл платиновой группы на оксидированной нержавеющей стали, отличающийся тем, что катализатор дополнительно содержит рений в количестве 0,05-0,25 мас.% в сочетании с платиной или палладием в том же интервале концентраций, оксидированная нержавеющая сталь остальное.

Описание изобретения к патенту

Изобретение относится к области защиты окружающей среды от токсичных компонентов отходящих газов, а именно к катализатору, способу приготовления катализатора для окислительной очистки газов от углеводородов и монооксида углерода.

Применение в катализаторах глубокого окисления углеводородов и монооксида углерода благородных металлов, таких как платина и палладий [Попова Н.М. Катализаторы очистки газовых выбросов промышленных производств. М.: Химия, 1991. С.47-54; Алхазов Т.Г., Марголис Л.Я. Глубокое каталитическое окисление органических веществ. М.: Химия, 1985. С.192; Химическая технология. 2001. № 3. С.9-17], обеспечивает высокую активность при довольно низких температурах (250-400°С), термостабильность и значительный срок службы катализатора. Существенным недостатком этих катализаторов является высокая стоимость, определяемая стоимостью входящих в их состав дорогостоящих платины и палладия.

Известны биметаллические катализаторы, содержащие сочетание рения, платины, палладия и др. элементов на графитоподобном углеродном носителе для бензилирования [RU, заявка № 2004111662, МПК B01J 23/38], или катализаторы риформинга на алюмоксидном катализаторе [В.Ф.Борбат, И.Н.Корнеева, Л.Н.Адеева, О.Н.Семенова, Е.В.Затолокина. Получение Pt-Re катализатора с использованием возвратных платины и рения //Вестник Омского университета, 1999, вып.2, с 36-38].

Недостатками катализатора являются технологическая сложность их изготовления, малая теплопроводность носителя - оксида алюминия.

Наиболее близким к предлагаемому изобретению является катализатор для окисления углеводородсодержащих газов, содержащий платину на носителе, представляющем собой оксидированную нержавеющую сталь, при соотношении компонентов (мас.%): Pt 0,02-0,11, носитель - остальное [RU, патент № 2063804, МПК B01J 23/89, 37/03]. Катализатор благодаря использованию металлического носителя обладает механической прочностью и теплопроводностью и проявляет высокую активность в процессах полного окисления углеводородов при температурах 250-400°С.

Недостаток катализатора в том, что он содержит дорогостоящую платину, что значительно увеличивает его стоимость.

В основу настоящего изобретения поставлена задача разработки катализатора с низкой стоимостью, обеспечивающего высокую степень очистки при низких температурах, высокую теплопроводность и механическую прочность.

Данная задача решается за счет того, что в предлагаемом биметаллическом катализаторе, включающем благородный металл и оксидированную нержавеющую сталь, согласно изобретению дополнительно содержится рений в количестве 0,05-0,25 мас.% в сочетании с платиной или палладием в том же интервале концентраций, оксидированная нержавеющая сталь остальное.

Пример приготовления катализатора осуществляется следующим образом. Носитель в виде дробленой стружки из нержавеющей стали марки Х18Н10Т или Х12Н10Т предварительно оксидируют. Носитель оксидировали в трубчатой электрической печи при температурах 400-500°С в течение 3-5 часов. Оксидирование при 400-500°С в течение 3-5 часов приводит к образованию тонкой хорошо сцепляемой с основой оксидной пленки желто-розового цвета. Увеличение температуры и времени оксидирования приводит к заметному окислению носителя и образованию оксидного слоя, который легко осыпается.

Оксидированную нержавеющую сталь помещают во фторопластовый автоклав с водным раствором, содержащим 0,05 моль/л гидроксида калия, NH4ReO4 и один из аммиачных комплексов: платины [Рt(NН3)4]Сl2 или палладия [Рd(NН3)4]Сl2 соответственно. Сущность изобретения заключается в необратимом восстановлении платины или палладия и рения аммиаком при повышенной температуре. Реакция протекает при взаимодействии их соединений-предшественников по уравнению: 3[Рt(NН3)4]Сl2 +6NH4ReO4+6КОНбиметаллический катализатор окислительной очистки газов, патент № 2378049 3Pt°+6Re°+8N2биметаллический катализатор окислительной очистки газов, патент № 2378049 +2NН3биметаллический катализатор окислительной очистки газов, патент № 2378049 +6КСl+30Н2О. Концентрации комплексов указаны в таблице 1. Отношение насыпного объема носителя к объему раствора равно 1:10 - 1:14. Раствор продувают в течение 20-30 минут аргоном или азотом для удаления из системы молекулярного кислорода, после чего автоклав герметизируют. Процесс ведут при температуре 180-200°С в течение 150-180 минут в автоклаве при перемешивании. Удаление кислорода из системы является обязательным условием получения качественных покрытий, так как в его присутствии при термолизе наряду с металлическими рением, платиной и палладием образуются их малорастворимые соединения переменного состава. Указанные интервалы продолжительности и температуры процесса, концентрация гидроксида калия в растворе являются условиями полного выделения рения и платиновых металлов из растворов указанных соединений и сохранения носителя. Они определены экспериментально. По окончании процесса готовый катализатор вынимают из раствора, промывают дистиллированной водой и сушат на воздухе при комнатной температуре.

Конкретные примеры приготовления катализаторов приведены в таблице 1.

Испытания приготовленных образцов проводили на газохроматографической установке, состоящей из микромодульного изотермического реактора (объем реакционной зоны катализа 1,5-3,5 см3) с диффузионной ячейкой ввода газоуглеводородной смеси, хроматографа ЛХМ-80 (стальная насадочная колонка 2 м×3 мм, заполненная Chromaton N-super с НФ 5% SE-30, температура колонок - 70°С, газ-носитель - азот). В качестве сырья использовали н-гексан и н-пропан. Условия проведения процесса: 1,5-3,5 см 3 испытуемого катализатора помещали в реактор, температура реакции - в интервале 250-500°С, скорость подачи сырьевой паровоздушной смеси - 5000 ч-1 концентрация н-гексана в исходной паровоздушной смеси составляла 2-3,5 г/м3 , н-пропана - 0,1% (в газовой смеси: н-пропан, воздух, азот). Степень окисления н-гексана и н-пропана рассчитывали как соотношение высот пиков углеводорода на хроматограмме до и после реакции окисления и выражали в %.

Результаты испытаний приготовленных биметаллических катализаторов в процессе окисления н-гексана и н-пропана приведены в таблице 2 и 3. Металлическое состояние платины и рения было доказано методом рентгенофазового анализа, результаты приведены в таблице 4. Исходя из данных табл.2 и 3 можно сказать, что биметаллические катализаторы, полученные по описанному выше способу, являются активными в процессах полного окисления углеводородов (н-гексан) в интервале температур 300-500°С и по активности не уступают катализатору прототипа.

Стоимость предлагаемого катализатора окислительной очистки газов на оксидированном стальном носителе снижается по сравнению с платиновым катализатором прототипа благодаря частичной замене дорогостоящих платины или палладия на более дешевый рений, при сохранении высокой степени очистки газов от углеводородов при невысоких температурах и высокой теплопроводности и механической прочности катализатора.

Таблица 1

Концентрационные условия нанесения рения совместно с платиной или палладием на оксидированную нержавеющую сталь
Образец Содержание, мас.% Концентрация в растворе, моль/л
RePt PdNH4 ReO4 [Pt(NH3)4]Cl2 [Pd(NH3)4]Cl2
10,1 0,1- 7,76·10-4 7,66·10-4 -
2 0,2 0,2- 1,16·10-3 1,67·10-3 -
3 0,1 -0,1 7,64·10-4 -1,33·10 -3
40,2 -0,2 1,84·10-3 -3,23·10 -3
прототип- 0,053- -6,0·10 -4-

Таблица 2

Результаты полного окисления н-гексана на катализаторах
Образец Содержание, мас.% Степень превращения, % при температуре, °С
Re Pt250 300350 400450
1 0,10,1 41,8385,83 95,64 99,8599,95
2 0,20,2 70,5692,69 98,21 98,8898,46
прототип - 0,053- 99,499,4 99,7-

Таблица 3

Результаты полного окисления н-пропана на катализаторах
Образец Содержание, мас.% Степень превращения при температуре, °С
RePt Pd250 300350 400450 500
1 0,2 -0,2 -5,2 39,399,7 99,499,7
2 0,1- 0,1- 3,07,6 76,898,0 99,4
3 0,1 0,1- 7,617,5 30,452,5 78,180,6
4 0,20,2 -10,7 35,661,5 81,190,7 94,1

Таблица 4

Рентгенографические характеристики платины и рения
Продукт автоклавного термолиза - фаза Pt Продукт автоклавного термолиза - фаза Re
2 биметаллический катализатор окислительной очистки газов, патент № 2378049 , градI, %d/n, Å (эксп.) d/n, Å (ASTM) 2 биметаллический катализатор окислительной очистки газов, патент № 2378049 , градI, %d/n, Å (эксп.) d/n, Å (ASTM)
50.7 1002.261 2.2747.4 302.408 2.388
- - -- 51.530 2.2282.226
59.3 851.957 1.95654.7 1002.107 2.105
88.8 84 1.3831.385 56.5 111.254 1.626
110.2 100 1.1801.179 67.8 22- 1.380
117.8 60 1.1301.130 82.1 20- 1.173

Класс B01J23/656 марганец, технеций или рений

катализатор для очистки отработавших газов и способ его производства -  патент 2478427 (10.04.2013)
катализатор нейтрализации отработанных газов и способ его получения -  патент 2477176 (10.03.2013)
способ получения уксусной кислоты -  патент 2467999 (27.11.2012)
технологический режим для pt-re биметаллических катализаторов конверсии водяного газа, катализаторы -  патент 2450968 (20.05.2012)
катализатор и способ дегидрирования углеводородов в его присутствии -  патент 2394642 (20.07.2010)
катализатор и способ получения пропилена -  патент 2370314 (20.10.2009)
катализатор для риформинга нафты и способ каталитического риформинга нафты -  патент 2357799 (10.06.2009)
катализатор для риформинга бензиновых фракций -  патент 2344877 (27.01.2009)
катализаторы, содержащие серебро, получение таких катализаторов и их применение -  патент 2342993 (10.01.2009)
способ приготовления триметаллического алюмоплатинового катализатора риформинга -  патент 2302898 (20.07.2007)

Класс B01J23/889 марганец, технеций или рений

конструктивный элемент с антимикробной поверхностью и его применение -  патент 2523161 (20.07.2014)
катализатор для получения метилмеркаптана -  патент 2497588 (10.11.2013)
смешанные оксидные катализаторы в виде полых тел -  патент 2491122 (27.08.2013)
конструктивный элемент с каталитической поверхностью, способ его изготовления и применение этого конструктивного элемента -  патент 2490063 (20.08.2013)
способ осуществления процесса фишера-тропша при низком давлении -  патент 2487159 (10.07.2013)
катализатор гидродеоксигенации кислородорганических продуктов переработки растительной биомассы и процесс гидродеоксигенации с применением этого катализатора -  патент 2472584 (20.01.2013)
способ изготовления пористого гранулированного катализатора -  патент 2453367 (20.06.2012)
катализатор (варианты) и способ восстановления диоксида серы из серосодержащих газов (варианты) -  патент 2445162 (20.03.2012)
промотированный катализатор синтеза фишера-тропша, способ его получения и способ синтеза углеводородов фишера-тропша -  патент 2389548 (20.05.2010)
катализатор, способ его приготовления и способ окисления метана -  патент 2388535 (10.05.2010)

Класс B01J23/89 в сочетании с благородными металлами

способ получения каталитически активных магниторазделяемых наночастиц -  патент 2506998 (20.02.2014)
способ получения катализатора синтеза углеводородов и его применение в процессе синтеза углеводородов -  патент 2502559 (27.12.2013)
смешанные оксидные катализаторы в виде полых тел -  патент 2491122 (27.08.2013)
катализатор для очистки отработавших газов и способ его производства -  патент 2478427 (10.04.2013)
катализатор нейтрализации отработанных газов и способ его получения -  патент 2477176 (10.03.2013)
катализатор на основе fe для синтеза фишера-тропша, способ его приготовления и применения -  патент 2468863 (10.12.2012)
способ получения катализатора на углеродном носителе -  патент 2467798 (27.11.2012)
катализатор для очистки выхлопного газа и использующее его устройство для очистки выхлопного газа -  патент 2467794 (27.11.2012)
способ получения катализатора с наноразмерными частицами сплавов платины -  патент 2455070 (10.07.2012)
катализатор и способ получения синтез-газа -  патент 2453366 (20.06.2012)
Наверх